Cargando…
Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2
Biochemical phenotypes are major indexes for protein structure and function characterization. They are determined, at least in part, by the intrinsic physicochemical properties of amino acids and may be reflected in the protein three-dimensional structure. Modeling mutational effects on biochemical...
Autores principales: | Wang, Bo, Gamazon, Eric R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852230/ https://www.ncbi.nlm.nih.gov/pubmed/33532766 http://dx.doi.org/10.1101/2021.01.28.428521 |
Ejemplares similares
-
Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2
por: Wang, Bo, et al.
Publicado: (2022) -
Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification
por: Câmara, Gabriel B. M., et al.
Publicado: (2022) -
Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks
por: Saldivar-Espinoza, Bryan, et al.
Publicado: (2022) -
Convolutional Neural Networks Based on Sequential Spike Predict the High Human Adaptation of SARS-CoV-2 Omicron Variants
por: Nan, Bei-Guang, et al.
Publicado: (2022) -
Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics
por: Zeng, Li, et al.
Publicado: (2021)