Cargando…
Dietary impact of a plant-derived microRNA on the gut microbiome
BACKGROUND: Global estimations of 4 billion people living on plant-based diets signify tremendous diversity in plant consumption and their assorted miRNAs, which presents a challenging model to experimentally address how plant-based miRNAs impact the microbiome. Here we establish baseline gut microb...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7856875/ https://www.ncbi.nlm.nih.gov/pubmed/33542959 http://dx.doi.org/10.1186/s41544-020-00053-2 |
Sumario: | BACKGROUND: Global estimations of 4 billion people living on plant-based diets signify tremendous diversity in plant consumption and their assorted miRNAs, which presents a challenging model to experimentally address how plant-based miRNAs impact the microbiome. Here we establish baseline gut microbiome composition for a mouse model deficient in the specific mammalian miR-146a shown to alter gut microbiomes. We then asses the effect on the gut microbiome when miR-146a-deficient mice are fed a transgenic plant-based diet expressing the murine-derived miR-146a. Mice deficient in miR-146a were maintained either on a baseline diet until 7 weeks of age (day 0) and then fed either vector or miR-146a-expressing plant-based diets for 21 days. The gut microbiomes of mice were examined by comparing the V4 region of 16S rRNA gene sequences of DNA isolated from fecal samples at days 0 (baseline diet) and 21 (vector or miR-146a expressing plant-based diets). RESULTS: Beta-diversity analysis demonstrated that the transition from baseline chow to a plant-based diet resulted in significant longitudinal shifts in microbial community structure attributable to increased fiber intake. Bipartite network analysis suggests that miR-146a-deficient mice fed a plant diet rich in miR-146a have a microbiome population modestly different than mice fed an isogenic control plant diet deficient in miR-146a. CONCLUSION: A mouse diet composed of a transgenic plant expressing a mouse miR-146a may fine tune microbial communities but does not appear to have global effects on microbiome structure and composition. |
---|