Cargando…
Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858634/ https://www.ncbi.nlm.nih.gov/pubmed/33536411 http://dx.doi.org/10.1038/s41467-020-20661-8 |
_version_ | 1783646640509288448 |
---|---|
author | Aryana, Kiumars Gaskins, John T. Nag, Joyeeta Stewart, Derek A. Bai, Zhaoqiang Mukhopadhyay, Saikat Read, John C. Olson, David H. Hoglund, Eric R. Howe, James M. Giri, Ashutosh Grobis, Michael K. Hopkins, Patrick E. |
author_facet | Aryana, Kiumars Gaskins, John T. Nag, Joyeeta Stewart, Derek A. Bai, Zhaoqiang Mukhopadhyay, Saikat Read, John C. Olson, David H. Hoglund, Eric R. Howe, James M. Giri, Ashutosh Grobis, Michael K. Hopkins, Patrick E. |
author_sort | Aryana, Kiumars |
collection | PubMed |
description | Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs. |
format | Online Article Text |
id | pubmed-7858634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-78586342021-02-11 Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices Aryana, Kiumars Gaskins, John T. Nag, Joyeeta Stewart, Derek A. Bai, Zhaoqiang Mukhopadhyay, Saikat Read, John C. Olson, David H. Hoglund, Eric R. Howe, James M. Giri, Ashutosh Grobis, Michael K. Hopkins, Patrick E. Nat Commun Article Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs. Nature Publishing Group UK 2021-02-03 /pmc/articles/PMC7858634/ /pubmed/33536411 http://dx.doi.org/10.1038/s41467-020-20661-8 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Aryana, Kiumars Gaskins, John T. Nag, Joyeeta Stewart, Derek A. Bai, Zhaoqiang Mukhopadhyay, Saikat Read, John C. Olson, David H. Hoglund, Eric R. Howe, James M. Giri, Ashutosh Grobis, Michael K. Hopkins, Patrick E. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title | Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title_full | Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title_fullStr | Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title_full_unstemmed | Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title_short | Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
title_sort | interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858634/ https://www.ncbi.nlm.nih.gov/pubmed/33536411 http://dx.doi.org/10.1038/s41467-020-20661-8 |
work_keys_str_mv | AT aryanakiumars interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT gaskinsjohnt interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT nagjoyeeta interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT stewartdereka interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT baizhaoqiang interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT mukhopadhyaysaikat interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT readjohnc interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT olsondavidh interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT hoglundericr interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT howejamesm interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT giriashutosh interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT grobismichaelk interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices AT hopkinspatricke interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices |