Cargando…

Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices

Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding...

Descripción completa

Detalles Bibliográficos
Autores principales: Aryana, Kiumars, Gaskins, John T., Nag, Joyeeta, Stewart, Derek A., Bai, Zhaoqiang, Mukhopadhyay, Saikat, Read, John C., Olson, David H., Hoglund, Eric R., Howe, James M., Giri, Ashutosh, Grobis, Michael K., Hopkins, Patrick E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858634/
https://www.ncbi.nlm.nih.gov/pubmed/33536411
http://dx.doi.org/10.1038/s41467-020-20661-8
_version_ 1783646640509288448
author Aryana, Kiumars
Gaskins, John T.
Nag, Joyeeta
Stewart, Derek A.
Bai, Zhaoqiang
Mukhopadhyay, Saikat
Read, John C.
Olson, David H.
Hoglund, Eric R.
Howe, James M.
Giri, Ashutosh
Grobis, Michael K.
Hopkins, Patrick E.
author_facet Aryana, Kiumars
Gaskins, John T.
Nag, Joyeeta
Stewart, Derek A.
Bai, Zhaoqiang
Mukhopadhyay, Saikat
Read, John C.
Olson, David H.
Hoglund, Eric R.
Howe, James M.
Giri, Ashutosh
Grobis, Michael K.
Hopkins, Patrick E.
author_sort Aryana, Kiumars
collection PubMed
description Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.
format Online
Article
Text
id pubmed-7858634
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78586342021-02-11 Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices Aryana, Kiumars Gaskins, John T. Nag, Joyeeta Stewart, Derek A. Bai, Zhaoqiang Mukhopadhyay, Saikat Read, John C. Olson, David H. Hoglund, Eric R. Howe, James M. Giri, Ashutosh Grobis, Michael K. Hopkins, Patrick E. Nat Commun Article Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs. Nature Publishing Group UK 2021-02-03 /pmc/articles/PMC7858634/ /pubmed/33536411 http://dx.doi.org/10.1038/s41467-020-20661-8 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Aryana, Kiumars
Gaskins, John T.
Nag, Joyeeta
Stewart, Derek A.
Bai, Zhaoqiang
Mukhopadhyay, Saikat
Read, John C.
Olson, David H.
Hoglund, Eric R.
Howe, James M.
Giri, Ashutosh
Grobis, Michael K.
Hopkins, Patrick E.
Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title_full Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title_fullStr Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title_full_unstemmed Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title_short Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
title_sort interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858634/
https://www.ncbi.nlm.nih.gov/pubmed/33536411
http://dx.doi.org/10.1038/s41467-020-20661-8
work_keys_str_mv AT aryanakiumars interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT gaskinsjohnt interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT nagjoyeeta interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT stewartdereka interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT baizhaoqiang interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT mukhopadhyaysaikat interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT readjohnc interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT olsondavidh interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT hoglundericr interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT howejamesm interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT giriashutosh interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT grobismichaelk interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices
AT hopkinspatricke interfacecontrolledthermalresistancesofultrathinchalcogenidebasedphasechangememorydevices