Cargando…
Alternative polyadenylation of mRNA and its role in cancer
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chongqing Medical University
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859462/ https://www.ncbi.nlm.nih.gov/pubmed/33569514 http://dx.doi.org/10.1016/j.gendis.2019.10.011 |
_version_ | 1783646739008323584 |
---|---|
author | Yuan, Fuwen Hankey, William Wagner, Eric J. Li, Wei Wang, Qianben |
author_facet | Yuan, Fuwen Hankey, William Wagner, Eric J. Li, Wei Wang, Qianben |
author_sort | Yuan, Fuwen |
collection | PubMed |
description | Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3′ end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3′UTR) and changes the length and content of these non-coding sequences. APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy. |
format | Online Article Text |
id | pubmed-7859462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Chongqing Medical University |
record_format | MEDLINE/PubMed |
spelling | pubmed-78594622021-02-09 Alternative polyadenylation of mRNA and its role in cancer Yuan, Fuwen Hankey, William Wagner, Eric J. Li, Wei Wang, Qianben Genes Dis Review Article Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3′ end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3′ end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3′UTR) and changes the length and content of these non-coding sequences. APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy. Chongqing Medical University 2019-10-25 /pmc/articles/PMC7859462/ /pubmed/33569514 http://dx.doi.org/10.1016/j.gendis.2019.10.011 Text en © 2019 Chongqing Medical University. Production and hosting by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Article Yuan, Fuwen Hankey, William Wagner, Eric J. Li, Wei Wang, Qianben Alternative polyadenylation of mRNA and its role in cancer |
title | Alternative polyadenylation of mRNA and its role in cancer |
title_full | Alternative polyadenylation of mRNA and its role in cancer |
title_fullStr | Alternative polyadenylation of mRNA and its role in cancer |
title_full_unstemmed | Alternative polyadenylation of mRNA and its role in cancer |
title_short | Alternative polyadenylation of mRNA and its role in cancer |
title_sort | alternative polyadenylation of mrna and its role in cancer |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859462/ https://www.ncbi.nlm.nih.gov/pubmed/33569514 http://dx.doi.org/10.1016/j.gendis.2019.10.011 |
work_keys_str_mv | AT yuanfuwen alternativepolyadenylationofmrnaanditsroleincancer AT hankeywilliam alternativepolyadenylationofmrnaanditsroleincancer AT wagnerericj alternativepolyadenylationofmrnaanditsroleincancer AT liwei alternativepolyadenylationofmrnaanditsroleincancer AT wangqianben alternativepolyadenylationofmrnaanditsroleincancer |