Cargando…
In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells
Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859976/ https://www.ncbi.nlm.nih.gov/pubmed/33650639 http://dx.doi.org/10.3892/or.2020.7915 |
_version_ | 1783646845463953408 |
---|---|
author | Jing, Wen Zhou, Mao Chen, Ruixia Ye, Xijiu Li, Weixing Su, Xiangfei Luo, Jianwei Wang, Zhi Peng, Shuling |
author_facet | Jing, Wen Zhou, Mao Chen, Ruixia Ye, Xijiu Li, Weixing Su, Xiangfei Luo, Jianwei Wang, Zhi Peng, Shuling |
author_sort | Jing, Wen |
collection | PubMed |
description | Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a potential strategy to selectively treat and eradicate LSCs, and, hence, improve leukemia therapy. Tucatinib (Irbinitinib) is a novel tyrosine kinase inhibitor, targeting ErbB family member HER2, and was approved by the Food and Drug Administration in April 2020, and in Switzerland in May 2020 for the treatment of HER2-positive breast cancer. In the present study, the results demonstrated that tucatinib significantly improved the efficacy of conventional chemotherapeutic agents in ABCG2-overexpressing leukemia cells and primary leukemia blast cells, derived from patients with leukemia. In addition, tucatinib markedly decreased the proportion of leukemia stem cell-like side population (SP) cells. In SP cells, isolated from leukemia cells, the intracellular accumulation of Hoechst 33342, which is an ABCG2 substrate, was significantly elevated by tucatinib. Furthermore, tucatinib notably inhibited the efflux of [(3)H]-mitoxantrone and, hence, there was a higher level of [(3)H]-mitoxantrone in the HL60/ABCG2 cell line. The result from the ATPase assay revealed that tucatinib may interact with the drug substrate-binding site and stimulated ATPase activity of ABCG2. However, the protein expression level and cellular location of ABCG2 were not affected by tucatinib treatment. Taken together, these data suggested that tucatinib could sensitize conventional chemotherapeutic agents, in ABCG2-overexpressing leukemia cells and LSCs, by blocking the pump function of the ABCG2 protein. The present study revealed that combined treatment with tucatinib and conventional cytotoxic agents could be a potential therapeutic strategy in ABCG2-positive leukemia. |
format | Online Article Text |
id | pubmed-7859976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-78599762021-03-09 In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells Jing, Wen Zhou, Mao Chen, Ruixia Ye, Xijiu Li, Weixing Su, Xiangfei Luo, Jianwei Wang, Zhi Peng, Shuling Oncol Rep Articles Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a potential strategy to selectively treat and eradicate LSCs, and, hence, improve leukemia therapy. Tucatinib (Irbinitinib) is a novel tyrosine kinase inhibitor, targeting ErbB family member HER2, and was approved by the Food and Drug Administration in April 2020, and in Switzerland in May 2020 for the treatment of HER2-positive breast cancer. In the present study, the results demonstrated that tucatinib significantly improved the efficacy of conventional chemotherapeutic agents in ABCG2-overexpressing leukemia cells and primary leukemia blast cells, derived from patients with leukemia. In addition, tucatinib markedly decreased the proportion of leukemia stem cell-like side population (SP) cells. In SP cells, isolated from leukemia cells, the intracellular accumulation of Hoechst 33342, which is an ABCG2 substrate, was significantly elevated by tucatinib. Furthermore, tucatinib notably inhibited the efflux of [(3)H]-mitoxantrone and, hence, there was a higher level of [(3)H]-mitoxantrone in the HL60/ABCG2 cell line. The result from the ATPase assay revealed that tucatinib may interact with the drug substrate-binding site and stimulated ATPase activity of ABCG2. However, the protein expression level and cellular location of ABCG2 were not affected by tucatinib treatment. Taken together, these data suggested that tucatinib could sensitize conventional chemotherapeutic agents, in ABCG2-overexpressing leukemia cells and LSCs, by blocking the pump function of the ABCG2 protein. The present study revealed that combined treatment with tucatinib and conventional cytotoxic agents could be a potential therapeutic strategy in ABCG2-positive leukemia. D.A. Spandidos 2021-03 2020-12-30 /pmc/articles/PMC7859976/ /pubmed/33650639 http://dx.doi.org/10.3892/or.2020.7915 Text en Copyright: © Jing et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Jing, Wen Zhou, Mao Chen, Ruixia Ye, Xijiu Li, Weixing Su, Xiangfei Luo, Jianwei Wang, Zhi Peng, Shuling In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title | In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title_full | In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title_fullStr | In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title_full_unstemmed | In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title_short | In vitro and ex vivo anti-tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2-overexpressing leukemia cells |
title_sort | in vitro and ex vivo anti-tumor effect and mechanism of tucatinib in leukemia stem cells and abcg2-overexpressing leukemia cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859976/ https://www.ncbi.nlm.nih.gov/pubmed/33650639 http://dx.doi.org/10.3892/or.2020.7915 |
work_keys_str_mv | AT jingwen invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT zhoumao invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT chenruixia invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT yexijiu invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT liweixing invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT suxiangfei invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT luojianwei invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT wangzhi invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells AT pengshuling invitroandexvivoantitumoreffectandmechanismoftucatinibinleukemiastemcellsandabcg2overexpressingleukemiacells |