Cargando…

Exploring the efficacy of naturally occurring biflavone based antioxidants towards the inhibition of the SARS-CoV-2 spike glycoprotein mediated membrane fusion

Molecular docking studies were done to show the inhibitory effect of two naturally occurring biflavone based anti-HIV agents, hinokiflavone and robustaflavone against the SARS-CoV-2 spike (S) protein mediated attack on the human ACE2 receptors via membrane fusion mechanism. Nefamostat, a FDA approve...

Descripción completa

Detalles Bibliográficos
Autores principales: Mondal, Samiran, Karmakar, Abhijit, Mallick, Tamanna, Begum, Naznin Ara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860945/
https://www.ncbi.nlm.nih.gov/pubmed/33571798
http://dx.doi.org/10.1016/j.virol.2021.01.015
Descripción
Sumario:Molecular docking studies were done to show the inhibitory effect of two naturally occurring biflavone based anti-HIV agents, hinokiflavone and robustaflavone against the SARS-CoV-2 spike (S) protein mediated attack on the human ACE2 receptors via membrane fusion mechanism. Nefamostat, a FDA approved drug, well-known as a serine protease inhibitor for MERS-CoV infection, was used as the reference compound. Both the biflavones, showed potential as inhibitors for SARS-CoV-2 S protein-mediated viral entry. The binding affinities of these naturally occurring biflavones for RBD-S2 subunit protein of SARS-CoV-2 were explored for the first time. Such binding affinities play a critical role in the virus-cell membrane fusion process. These biflavones are able to interact more strongly with the residues of heptad repeat 1 and 2 (HR1 and HR2) regions of S2 protein of SARS-CoV-2 compared to nefamostat, and thus, these biflavones can effectively block the formation of six-helix bundle core fusion structure (6-HB) leading to the inhibition of virus-target cell-membrane fusion.