Cargando…
Research on the Prediction of Green Plum Acidity Based on Improved XGBoost
The acidity of green plum has an important influence on the fruit’s deep processing. Traditional physical and chemical analysis methods for green plum acidity detection are destructive, time-consuming, and unable to achieve online detection. In response, a rapid and non-destructive detection method...
Autores principales: | Liu, Yang, Wang, Honghong, Fei, Yeqi, Liu, Ying, Shen, Luxiang, Zhuang, Zilong, Zhang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866513/ https://www.ncbi.nlm.nih.gov/pubmed/33573249 http://dx.doi.org/10.3390/s21030930 |
Ejemplares similares
-
Defect Classification of Green Plums Based on Deep Learning
por: Zhou, Haiyan, et al.
Publicado: (2020) -
The plum plum pickers : a novel
por: Barrio, Raymond
Publicado: (1970) -
Driving Force Analysis of Natural Wetland in Northeast Plain Based on SSA-XGBoost Model
por: Liu, Hanlin, et al.
Publicado: (2023) -
Thermal Error Prediction and Compensation of Digital Twin Laser Cutting Based on T-XGBoost
por: Lu, Chang, et al.
Publicado: (2022) -
Improved Multiclassification of Schizophrenia Based on Xgboost and Information Fusion for Small Datasets
por: Zhu, Wenjing, et al.
Publicado: (2022)