Cargando…
Mitochondria exert age-divergent effects on recovery from spinal cord injury
The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870583/ https://www.ncbi.nlm.nih.gov/pubmed/33422552 http://dx.doi.org/10.1016/j.expneurol.2021.113597 |
_version_ | 1783648833065975808 |
---|---|
author | Stewart, Andrew N. McFarlane, Katelyn E. Vekaria, Hemendra J. Bailey, William M. Slone, Stacey A. Tranthem, Lauren A. Zhang, Bei Patel, Samir P. Sullivan, Patrick G. Gensel, John C. |
author_facet | Stewart, Andrew N. McFarlane, Katelyn E. Vekaria, Hemendra J. Bailey, William M. Slone, Stacey A. Tranthem, Lauren A. Zhang, Bei Patel, Samir P. Sullivan, Patrick G. Gensel, John C. |
author_sort | Stewart, Andrew N. |
collection | PubMed |
description | The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue sparing, reduced ROS-associated 3-nitrotyrosine (3-NT) accumulation, and improved anatomical and functional recovery in 14-MO SCI-mice. By directly comparing the effects of DNP between ages we demonstrate that mitochondrial contributions to neurodegeneration diverge with age after SCI. Collectively, our data indicate an essential role of mitochondria in age-associated neurodegeneration. |
format | Online Article Text |
id | pubmed-7870583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-78705832021-03-01 Mitochondria exert age-divergent effects on recovery from spinal cord injury Stewart, Andrew N. McFarlane, Katelyn E. Vekaria, Hemendra J. Bailey, William M. Slone, Stacey A. Tranthem, Lauren A. Zhang, Bei Patel, Samir P. Sullivan, Patrick G. Gensel, John C. Exp Neurol Article The extent that age-dependent mitochondrial dysfunction drives neurodegeneration is not well understood. This study tested the hypothesis that mitochondria contribute to spinal cord injury (SCI)-induced neurodegeneration in an age-dependent manner by using 2,4-dinitrophenol (DNP) to uncouple electron transport, thereby increasing cellular respiration and reducing reactive oxygen species (ROS) production. We directly compared the effects of graded DNP doses in 4- and 14-month-old (MO) SCI-mice and found DNP to have increased efficacy in mitochondria isolated from 14-MO animals. In vivo, all DNP doses significantly exacerbated 4-MO SCI neurodegeneration coincident with worsened recovery. In contrast, low DNP doses (1.0-mg/kg/day) improved tissue sparing, reduced ROS-associated 3-nitrotyrosine (3-NT) accumulation, and improved anatomical and functional recovery in 14-MO SCI-mice. By directly comparing the effects of DNP between ages we demonstrate that mitochondrial contributions to neurodegeneration diverge with age after SCI. Collectively, our data indicate an essential role of mitochondria in age-associated neurodegeneration. 2021-01-07 2021-03 /pmc/articles/PMC7870583/ /pubmed/33422552 http://dx.doi.org/10.1016/j.expneurol.2021.113597 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stewart, Andrew N. McFarlane, Katelyn E. Vekaria, Hemendra J. Bailey, William M. Slone, Stacey A. Tranthem, Lauren A. Zhang, Bei Patel, Samir P. Sullivan, Patrick G. Gensel, John C. Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title | Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title_full | Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title_fullStr | Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title_full_unstemmed | Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title_short | Mitochondria exert age-divergent effects on recovery from spinal cord injury |
title_sort | mitochondria exert age-divergent effects on recovery from spinal cord injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870583/ https://www.ncbi.nlm.nih.gov/pubmed/33422552 http://dx.doi.org/10.1016/j.expneurol.2021.113597 |
work_keys_str_mv | AT stewartandrewn mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT mcfarlanekatelyne mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT vekariahemendraj mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT baileywilliamm mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT slonestaceya mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT tranthemlaurena mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT zhangbei mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT patelsamirp mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT sullivanpatrickg mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury AT genseljohnc mitochondriaexertagedivergenteffectsonrecoveryfromspinalcordinjury |