Cargando…
Global proteomics of Ubqln2-based murine models of ALS
Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like dom...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873701/ https://www.ncbi.nlm.nih.gov/pubmed/33277362 http://dx.doi.org/10.1074/jbc.RA120.015960 |
_version_ | 1783649436145025024 |
---|---|
author | Whiteley, Alexandra M. Prado, Miguel A. de Poot, Stefanie A.H. Paulo, Joao A. Ashton, Marissa Dominguez, Sara Weber, Martin Ngu, Hai Szpyt, John Jedrychowski, Mark P. Easton, Amy Gygi, Steven P. Kurz, Thimo Monteiro, Mervyn J. Brown, Eric J. Finley, Daniel |
author_facet | Whiteley, Alexandra M. Prado, Miguel A. de Poot, Stefanie A.H. Paulo, Joao A. Ashton, Marissa Dominguez, Sara Weber, Martin Ngu, Hai Szpyt, John Jedrychowski, Mark P. Easton, Amy Gygi, Steven P. Kurz, Thimo Monteiro, Mervyn J. Brown, Eric J. Finley, Daniel |
author_sort | Whiteley, Alexandra M. |
collection | PubMed |
description | Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2. |
format | Online Article Text |
id | pubmed-7873701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-78737012021-03-19 Global proteomics of Ubqln2-based murine models of ALS Whiteley, Alexandra M. Prado, Miguel A. de Poot, Stefanie A.H. Paulo, Joao A. Ashton, Marissa Dominguez, Sara Weber, Martin Ngu, Hai Szpyt, John Jedrychowski, Mark P. Easton, Amy Gygi, Steven P. Kurz, Thimo Monteiro, Mervyn J. Brown, Eric J. Finley, Daniel J Biol Chem Research Article Familial neurodegenerative diseases commonly involve mutations that result in either aberrant proteins or dysfunctional components of the proteolytic machinery that act on aberrant proteins. UBQLN2 is a ubiquitin receptor of the UBL/UBA family that binds the proteasome through its ubiquitin-like domain and is thought to deliver ubiquitinated proteins to proteasomes for degradation. UBQLN2 mutations result in familial amyotrophic lateral sclerosis (ALS)/frontotemporal dementia in humans through an unknown mechanism. Quantitative multiplexed proteomics was used to provide for the first time an unbiased and global analysis of the role of Ubqln2 in controlling the composition of the proteome. We studied several murine models of Ubqln2-linked ALS and also generated Ubqln2 null mutant mice. We identified impacts of Ubqln2 on diverse physiological pathways, most notably serotonergic signaling. Interestingly, we observed an upregulation of proteasome subunits, suggesting a compensatory response to diminished proteasome output. Among the specific proteins whose abundance is linked to UBQLN2 function, the strongest hits were the ubiquitin ligase TRIM32 and two retroelement-derived proteins, PEG10 and CXX1B. Cycloheximide chase studies using induced human neurons and HEK293 cells suggested that PEG10 and TRIM32 are direct clients. Although UBQLN2 directs the degradation of multiple proteins via the proteasome, it surprisingly conferred strong protection from degradation on the Gag-like protein CXX1B, which is expressed from the same family of retroelement genes as PEG10. In summary, this study charts the proteomic landscape of ALS-related Ubqln2 mutants and identifies candidate client proteins that are altered in vivo in disease models and whose degradation is promoted by UBQLN2. American Society for Biochemistry and Molecular Biology 2020-12-10 /pmc/articles/PMC7873701/ /pubmed/33277362 http://dx.doi.org/10.1074/jbc.RA120.015960 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Whiteley, Alexandra M. Prado, Miguel A. de Poot, Stefanie A.H. Paulo, Joao A. Ashton, Marissa Dominguez, Sara Weber, Martin Ngu, Hai Szpyt, John Jedrychowski, Mark P. Easton, Amy Gygi, Steven P. Kurz, Thimo Monteiro, Mervyn J. Brown, Eric J. Finley, Daniel Global proteomics of Ubqln2-based murine models of ALS |
title | Global proteomics of Ubqln2-based murine models of ALS |
title_full | Global proteomics of Ubqln2-based murine models of ALS |
title_fullStr | Global proteomics of Ubqln2-based murine models of ALS |
title_full_unstemmed | Global proteomics of Ubqln2-based murine models of ALS |
title_short | Global proteomics of Ubqln2-based murine models of ALS |
title_sort | global proteomics of ubqln2-based murine models of als |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873701/ https://www.ncbi.nlm.nih.gov/pubmed/33277362 http://dx.doi.org/10.1074/jbc.RA120.015960 |
work_keys_str_mv | AT whiteleyalexandram globalproteomicsofubqln2basedmurinemodelsofals AT pradomiguela globalproteomicsofubqln2basedmurinemodelsofals AT depootstefanieah globalproteomicsofubqln2basedmurinemodelsofals AT paulojoaoa globalproteomicsofubqln2basedmurinemodelsofals AT ashtonmarissa globalproteomicsofubqln2basedmurinemodelsofals AT dominguezsara globalproteomicsofubqln2basedmurinemodelsofals AT webermartin globalproteomicsofubqln2basedmurinemodelsofals AT nguhai globalproteomicsofubqln2basedmurinemodelsofals AT szpytjohn globalproteomicsofubqln2basedmurinemodelsofals AT jedrychowskimarkp globalproteomicsofubqln2basedmurinemodelsofals AT eastonamy globalproteomicsofubqln2basedmurinemodelsofals AT gygistevenp globalproteomicsofubqln2basedmurinemodelsofals AT kurzthimo globalproteomicsofubqln2basedmurinemodelsofals AT monteiromervynj globalproteomicsofubqln2basedmurinemodelsofals AT brownericj globalproteomicsofubqln2basedmurinemodelsofals AT finleydaniel globalproteomicsofubqln2basedmurinemodelsofals |