Cargando…
Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation
Hematopoietic disorders, particularly hemolytic anemias, commonly lead to bone loss. We have previously reported that actively proliferating cancer cells stimulate osteoclastogenesis from late precursors in a RANKL‐independent manner. We theorized that cancer cells exploit the physiological role of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883842/ https://www.ncbi.nlm.nih.gov/pubmed/33587325 http://dx.doi.org/10.14814/phy2.14745 |
_version_ | 1783651295112986624 |
---|---|
author | Sadvakassova, Gulzhakhan Tiedemann, Kerstin Steer, Kieran J. D. Mikolajewicz, Nicholas Stavnichuk, Mariya In‐Kyung Lee, Irene Sabirova, Zarina Schranzhofer, Matthias Komarova, Svetlana V. |
author_facet | Sadvakassova, Gulzhakhan Tiedemann, Kerstin Steer, Kieran J. D. Mikolajewicz, Nicholas Stavnichuk, Mariya In‐Kyung Lee, Irene Sabirova, Zarina Schranzhofer, Matthias Komarova, Svetlana V. |
author_sort | Sadvakassova, Gulzhakhan |
collection | PubMed |
description | Hematopoietic disorders, particularly hemolytic anemias, commonly lead to bone loss. We have previously reported that actively proliferating cancer cells stimulate osteoclastogenesis from late precursors in a RANKL‐independent manner. We theorized that cancer cells exploit the physiological role of bone resorption to support expanding hematopoietic bone marrow and examined if hematopoietic cells can trigger osteoclastogenesis. Using phlebotomy‐induced acute anemia in mice, we found strong correlation between augmented erythropoiesis and increased osteoclastogenesis. Conditioned medium (CM) from K562 erythroleukemia cells and primary mouse erythroblasts stimulated osteoclastogenesis when added to RANKL‐primed precursors from mouse bone marrow or RAW264.7 cells. Using immunoblotting and mass spectrometry, PRDX2 was identified as a factor produced by erythroid cells in vitro and in vivo. PRDX2 was detected in K562‐derived exosomes, and inhibiting exosomal release significantly decreased the osteoclastogenic capacity of K562 CM. Recombinant PRDX2 induced osteoclast formation from RANKL‐primed primary or RAW 264.7 precursors to levels comparable to achieved with continuous RANKL treatment. Thus, increased bone marrow erythropoiesis secondary to anemia leads to upregulation of PRDX2, which is released in the exosomes and acts to induce osteoclast formation. Increased bone resorption by the osteoclasts expands bone marrow cavity, which likely plays a supporting role to increase blood cell production. |
format | Online Article Text |
id | pubmed-7883842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78838422021-02-19 Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation Sadvakassova, Gulzhakhan Tiedemann, Kerstin Steer, Kieran J. D. Mikolajewicz, Nicholas Stavnichuk, Mariya In‐Kyung Lee, Irene Sabirova, Zarina Schranzhofer, Matthias Komarova, Svetlana V. Physiol Rep Original Articles Hematopoietic disorders, particularly hemolytic anemias, commonly lead to bone loss. We have previously reported that actively proliferating cancer cells stimulate osteoclastogenesis from late precursors in a RANKL‐independent manner. We theorized that cancer cells exploit the physiological role of bone resorption to support expanding hematopoietic bone marrow and examined if hematopoietic cells can trigger osteoclastogenesis. Using phlebotomy‐induced acute anemia in mice, we found strong correlation between augmented erythropoiesis and increased osteoclastogenesis. Conditioned medium (CM) from K562 erythroleukemia cells and primary mouse erythroblasts stimulated osteoclastogenesis when added to RANKL‐primed precursors from mouse bone marrow or RAW264.7 cells. Using immunoblotting and mass spectrometry, PRDX2 was identified as a factor produced by erythroid cells in vitro and in vivo. PRDX2 was detected in K562‐derived exosomes, and inhibiting exosomal release significantly decreased the osteoclastogenic capacity of K562 CM. Recombinant PRDX2 induced osteoclast formation from RANKL‐primed primary or RAW 264.7 precursors to levels comparable to achieved with continuous RANKL treatment. Thus, increased bone marrow erythropoiesis secondary to anemia leads to upregulation of PRDX2, which is released in the exosomes and acts to induce osteoclast formation. Increased bone resorption by the osteoclasts expands bone marrow cavity, which likely plays a supporting role to increase blood cell production. John Wiley and Sons Inc. 2021-02-15 /pmc/articles/PMC7883842/ /pubmed/33587325 http://dx.doi.org/10.14814/phy2.14745 Text en © 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Sadvakassova, Gulzhakhan Tiedemann, Kerstin Steer, Kieran J. D. Mikolajewicz, Nicholas Stavnichuk, Mariya In‐Kyung Lee, Irene Sabirova, Zarina Schranzhofer, Matthias Komarova, Svetlana V. Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title | Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title_full | Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title_fullStr | Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title_full_unstemmed | Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title_short | Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation |
title_sort | active hematopoiesis triggers exosomal release of prdx2 that promotes osteoclast formation |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883842/ https://www.ncbi.nlm.nih.gov/pubmed/33587325 http://dx.doi.org/10.14814/phy2.14745 |
work_keys_str_mv | AT sadvakassovagulzhakhan activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT tiedemannkerstin activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT steerkieranjd activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT mikolajewicznicholas activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT stavnichukmariya activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT inkyungleeirene activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT sabirovazarina activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT schranzhofermatthias activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation AT komarovasvetlanav activehematopoiesistriggersexosomalreleaseofprdx2thatpromotesosteoclastformation |