Cargando…

Mapping drug-target interactions and synergy in multi-molecular therapeutics for pressure-overload cardiac hypertrophy

Advancements in systems biology have resulted in the development of network pharmacology, leading to a paradigm shift from “one-target, one-drug” to “target-network, multi-component therapeutics”. We employ a chimeric approach involving in-vivo assays, gene expression analysis, cheminformatics, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Rai, Aparna, Kumar, Vikas, Jerath, Gaurav, Kartha, C. C., Ramakrishnan, Vibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884732/
https://www.ncbi.nlm.nih.gov/pubmed/33589646
http://dx.doi.org/10.1038/s41540-021-00171-z
Descripción
Sumario:Advancements in systems biology have resulted in the development of network pharmacology, leading to a paradigm shift from “one-target, one-drug” to “target-network, multi-component therapeutics”. We employ a chimeric approach involving in-vivo assays, gene expression analysis, cheminformatics, and network biology to deduce the regulatory actions of a multi-constituent Ayurvedic concoction, Amalaki Rasayana (AR) in animal models for its effect in pressure-overload cardiac hypertrophy. The proteomics analysis of in-vivo assays for Aorta Constricted and Biologically Aged rat models identify proteins expressed under each condition. Network analysis mapping protein–protein interactions and synergistic actions of AR using multi-component networks reveal drug targets such as ACADM, COX4I1, COX6B1, HBB, MYH14, and SLC25A4, as potential pharmacological co-targets for cardiac hypertrophy. Further, five out of eighteen AR constituents potentially target these proteins. We propose a distinct prospective strategy for the discovery of network pharmacological therapies and repositioning of existing drug molecules for treating pressure-overload cardiac hypertrophy.