Cargando…

A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules

[Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zorn, Kimberley M., Sun, Shengxi, McConnon, Cecelia L., Ma, Kelley, Chen, Eric K., Foil, Daniel H., Lane, Thomas R., Liu, Lawrence J., El-Sakkary, Nelly, Skinner, Danielle E., Ekins, Sean, Caffrey, Conor R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887754/
https://www.ncbi.nlm.nih.gov/pubmed/33434015
http://dx.doi.org/10.1021/acsinfecdis.0c00754
_version_ 1783652041547055104
author Zorn, Kimberley M.
Sun, Shengxi
McConnon, Cecelia L.
Ma, Kelley
Chen, Eric K.
Foil, Daniel H.
Lane, Thomas R.
Liu, Lawrence J.
El-Sakkary, Nelly
Skinner, Danielle E.
Ekins, Sean
Caffrey, Conor R.
author_facet Zorn, Kimberley M.
Sun, Shengxi
McConnon, Cecelia L.
Ma, Kelley
Chen, Eric K.
Foil, Daniel H.
Lane, Thomas R.
Liu, Lawrence J.
El-Sakkary, Nelly
Skinner, Danielle E.
Ekins, Sean
Caffrey, Conor R.
author_sort Zorn, Kimberley M.
collection PubMed
description [Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite’s developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1–2% hit rate for traditional high throughput screens.
format Online
Article
Text
id pubmed-7887754
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-78877542021-02-17 A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules Zorn, Kimberley M. Sun, Shengxi McConnon, Cecelia L. Ma, Kelley Chen, Eric K. Foil, Daniel H. Lane, Thomas R. Liu, Lawrence J. El-Sakkary, Nelly Skinner, Danielle E. Ekins, Sean Caffrey, Conor R. ACS Infect Dis [Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite’s developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1–2% hit rate for traditional high throughput screens. American Chemical Society 2021-01-12 2021-02-12 /pmc/articles/PMC7887754/ /pubmed/33434015 http://dx.doi.org/10.1021/acsinfecdis.0c00754 Text en © 2021 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Zorn, Kimberley M.
Sun, Shengxi
McConnon, Cecelia L.
Ma, Kelley
Chen, Eric K.
Foil, Daniel H.
Lane, Thomas R.
Liu, Lawrence J.
El-Sakkary, Nelly
Skinner, Danielle E.
Ekins, Sean
Caffrey, Conor R.
A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title_full A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title_fullStr A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title_full_unstemmed A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title_short A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
title_sort machine learning strategy for drug discovery identifies anti-schistosomal small molecules
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887754/
https://www.ncbi.nlm.nih.gov/pubmed/33434015
http://dx.doi.org/10.1021/acsinfecdis.0c00754
work_keys_str_mv AT zornkimberleym amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT sunshengxi amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT mcconnoncecelial amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT makelley amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT chenerick amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT foildanielh amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT lanethomasr amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT liulawrencej amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT elsakkarynelly amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT skinnerdaniellee amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT ekinssean amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT caffreyconorr amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT zornkimberleym machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT sunshengxi machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT mcconnoncecelial machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT makelley machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT chenerick machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT foildanielh machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT lanethomasr machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT liulawrencej machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT elsakkarynelly machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT skinnerdaniellee machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT ekinssean machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules
AT caffreyconorr machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules