Cargando…
A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules
[Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887754/ https://www.ncbi.nlm.nih.gov/pubmed/33434015 http://dx.doi.org/10.1021/acsinfecdis.0c00754 |
_version_ | 1783652041547055104 |
---|---|
author | Zorn, Kimberley M. Sun, Shengxi McConnon, Cecelia L. Ma, Kelley Chen, Eric K. Foil, Daniel H. Lane, Thomas R. Liu, Lawrence J. El-Sakkary, Nelly Skinner, Danielle E. Ekins, Sean Caffrey, Conor R. |
author_facet | Zorn, Kimberley M. Sun, Shengxi McConnon, Cecelia L. Ma, Kelley Chen, Eric K. Foil, Daniel H. Lane, Thomas R. Liu, Lawrence J. El-Sakkary, Nelly Skinner, Danielle E. Ekins, Sean Caffrey, Conor R. |
author_sort | Zorn, Kimberley M. |
collection | PubMed |
description | [Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite’s developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1–2% hit rate for traditional high throughput screens. |
format | Online Article Text |
id | pubmed-7887754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-78877542021-02-17 A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules Zorn, Kimberley M. Sun, Shengxi McConnon, Cecelia L. Ma, Kelley Chen, Eric K. Foil, Daniel H. Lane, Thomas R. Liu, Lawrence J. El-Sakkary, Nelly Skinner, Danielle E. Ekins, Sean Caffrey, Conor R. ACS Infect Dis [Image: see text] Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite’s developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1–2% hit rate for traditional high throughput screens. American Chemical Society 2021-01-12 2021-02-12 /pmc/articles/PMC7887754/ /pubmed/33434015 http://dx.doi.org/10.1021/acsinfecdis.0c00754 Text en © 2021 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Zorn, Kimberley M. Sun, Shengxi McConnon, Cecelia L. Ma, Kelley Chen, Eric K. Foil, Daniel H. Lane, Thomas R. Liu, Lawrence J. El-Sakkary, Nelly Skinner, Danielle E. Ekins, Sean Caffrey, Conor R. A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules |
title | A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules |
title_full | A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules |
title_fullStr | A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules |
title_full_unstemmed | A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules |
title_short | A Machine Learning Strategy for Drug Discovery Identifies
Anti-Schistosomal Small Molecules |
title_sort | machine learning strategy for drug discovery identifies
anti-schistosomal small molecules |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887754/ https://www.ncbi.nlm.nih.gov/pubmed/33434015 http://dx.doi.org/10.1021/acsinfecdis.0c00754 |
work_keys_str_mv | AT zornkimberleym amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT sunshengxi amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT mcconnoncecelial amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT makelley amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT chenerick amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT foildanielh amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT lanethomasr amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT liulawrencej amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT elsakkarynelly amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT skinnerdaniellee amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT ekinssean amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT caffreyconorr amachinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT zornkimberleym machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT sunshengxi machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT mcconnoncecelial machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT makelley machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT chenerick machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT foildanielh machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT lanethomasr machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT liulawrencej machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT elsakkarynelly machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT skinnerdaniellee machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT ekinssean machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules AT caffreyconorr machinelearningstrategyfordrugdiscoveryidentifiesantischistosomalsmallmolecules |