Cargando…
Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction
[Image: see text] Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in ro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887803/ https://www.ncbi.nlm.nih.gov/pubmed/33347274 http://dx.doi.org/10.1021/acs.chemrestox.0c00511 |
_version_ | 1783652049690296320 |
---|---|
author | Jain, Sankalp Norinder, Ulf Escher, Sylvia E. Zdrazil, Barbara |
author_facet | Jain, Sankalp Norinder, Ulf Escher, Sylvia E. Zdrazil, Barbara |
author_sort | Jain, Sankalp |
collection | PubMed |
description | [Image: see text] Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the “steatotic” compounds belonging to the minority class) required the use of meta-classifiers—bagging with stratified under-sampling and Mondrian conformal prediction—on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology. |
format | Online Article Text |
id | pubmed-7887803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-78878032021-02-17 Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction Jain, Sankalp Norinder, Ulf Escher, Sylvia E. Zdrazil, Barbara Chem Res Toxicol [Image: see text] Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the “steatotic” compounds belonging to the minority class) required the use of meta-classifiers—bagging with stratified under-sampling and Mondrian conformal prediction—on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology. American Chemical Society 2020-12-21 2021-02-15 /pmc/articles/PMC7887803/ /pubmed/33347274 http://dx.doi.org/10.1021/acs.chemrestox.0c00511 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Jain, Sankalp Norinder, Ulf Escher, Sylvia E. Zdrazil, Barbara Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction |
title | Combining In Vivo Data with In Silico Predictions
for Modeling Hepatic Steatosis by
Using Stratified Bagging and Conformal Prediction |
title_full | Combining In Vivo Data with In Silico Predictions
for Modeling Hepatic Steatosis by
Using Stratified Bagging and Conformal Prediction |
title_fullStr | Combining In Vivo Data with In Silico Predictions
for Modeling Hepatic Steatosis by
Using Stratified Bagging and Conformal Prediction |
title_full_unstemmed | Combining In Vivo Data with In Silico Predictions
for Modeling Hepatic Steatosis by
Using Stratified Bagging and Conformal Prediction |
title_short | Combining In Vivo Data with In Silico Predictions
for Modeling Hepatic Steatosis by
Using Stratified Bagging and Conformal Prediction |
title_sort | combining in vivo data with in silico predictions
for modeling hepatic steatosis by
using stratified bagging and conformal prediction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887803/ https://www.ncbi.nlm.nih.gov/pubmed/33347274 http://dx.doi.org/10.1021/acs.chemrestox.0c00511 |
work_keys_str_mv | AT jainsankalp combininginvivodatawithinsilicopredictionsformodelinghepaticsteatosisbyusingstratifiedbaggingandconformalprediction AT norinderulf combininginvivodatawithinsilicopredictionsformodelinghepaticsteatosisbyusingstratifiedbaggingandconformalprediction AT eschersylviae combininginvivodatawithinsilicopredictionsformodelinghepaticsteatosisbyusingstratifiedbaggingandconformalprediction AT zdrazilbarbara combininginvivodatawithinsilicopredictionsformodelinghepaticsteatosisbyusingstratifiedbaggingandconformalprediction |