Cargando…
Visible‐Light‐Mediated Heterocycle Functionalization via Geometrically Interrupted [2+2] Cycloaddition
The [2+2] photocycloaddition is the most valuable and intensively investigated photochemical process. Here we demonstrate that irradiation of N‐acryloyl heterocycles with blue LED light (440 nm) in the presence of an Ir(III) complex leads to efficient and high yielding fused γ‐lactam formation acros...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891567/ https://www.ncbi.nlm.nih.gov/pubmed/32856748 http://dx.doi.org/10.1002/anie.202009704 |
Sumario: | The [2+2] photocycloaddition is the most valuable and intensively investigated photochemical process. Here we demonstrate that irradiation of N‐acryloyl heterocycles with blue LED light (440 nm) in the presence of an Ir(III) complex leads to efficient and high yielding fused γ‐lactam formation across a range of substituted heterocycles. Quantum calculations show that the reaction proceeds via cyclization in the triplet excited state to yield a 1,4‐diradical; intersystem crossing leads preferentially to the closed shell singlet zwitterion. This is geometrically restricted from undergoing recombination to yield a cyclobutane by the planarity of the amide substituent. A prototropic shift leads to the observed bicyclic products in what can be viewed as an interrupted [2+2] cycloaddition. |
---|