Cargando…

Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate

Various serogroups of Shiga toxin-producing Escherichia coli have been epidemiologically associated with foodborne disease episodes in the United States and around the globe, with E. coli O157: H7 as the dominant serogroup of public health concern. Serogroups other than O157 are currently associated...

Descripción completa

Detalles Bibliográficos
Autores principales: Allison, Abimbola, Fouladkhah, Aliyar Cyrus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891723/
https://www.ncbi.nlm.nih.gov/pubmed/33600440
http://dx.doi.org/10.1371/journal.pone.0246735
_version_ 1783652759947444224
author Allison, Abimbola
Fouladkhah, Aliyar Cyrus
author_facet Allison, Abimbola
Fouladkhah, Aliyar Cyrus
author_sort Allison, Abimbola
collection PubMed
description Various serogroups of Shiga toxin-producing Escherichia coli have been epidemiologically associated with foodborne disease episodes in the United States and around the globe, with E. coli O157: H7 as the dominant serogroup of public health concern. Serogroups other than O157 are currently associated with about 60% of Shiga toxin-producing E. coli related foodborne illness episodes. Current study evaluated sensitivity of the O157 and epidemiologically important non-O157 serogroups of the pathogen to elevated hydrostatic pressure and 1% lactic acid. Pressure intensity of 250 to 650 MPa were applied for 0 to 7 min for inactivation of strain mixtures of wild-type and rifampicin-resistant E. coli O157, as well as O26, O45, O103, O111, O121, and O145 serogroups and ATCC(®) 43895(™) strain in ground meat and 10% meat homogenate. E. coli O157 were reduced (p < 0.05) from 6.86 ± 0.2 to 4.56 ± 0.1 log CFU/g when exposed to pressure of 650 MPa for 7 min. Corresponding reductions (p < 0.05) for non-O157 E. coli were from 6.98 ± 0.3 to 4.72 ± 0.1. The D-values at 650 MPa were 3.71 and 3.47 min for O157 and non-O157 serogroups, respectively. Presence of 1% lactic acid to a great extent augmented (p < 0.05) decontamination efficacy of the treatment in meat homogenate resulting in up to 5.6 and 6.0 log CFU/mL reductions for O157 and non-O157 serogroups, respectively. Among the tested serogroups, the wild-type and rifampicin-resistant phenotypes exhibited (p ≥ 0.05) comparable pressure sensitivity. Thus, these two phenotypes could be used interchangeably in validation studies. Our results also illustrate that, application of elevated hydrostatic pressure could be utilized for assuring safety of ground and non-intact meat products against various serogroups of Shiga toxin-producing E. coli. Addition of 1% lactic acid additionally provided industrially appreciable augmentation in efficacy of the pressure-based treatments.
format Online
Article
Text
id pubmed-7891723
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78917232021-03-01 Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate Allison, Abimbola Fouladkhah, Aliyar Cyrus PLoS One Research Article Various serogroups of Shiga toxin-producing Escherichia coli have been epidemiologically associated with foodborne disease episodes in the United States and around the globe, with E. coli O157: H7 as the dominant serogroup of public health concern. Serogroups other than O157 are currently associated with about 60% of Shiga toxin-producing E. coli related foodborne illness episodes. Current study evaluated sensitivity of the O157 and epidemiologically important non-O157 serogroups of the pathogen to elevated hydrostatic pressure and 1% lactic acid. Pressure intensity of 250 to 650 MPa were applied for 0 to 7 min for inactivation of strain mixtures of wild-type and rifampicin-resistant E. coli O157, as well as O26, O45, O103, O111, O121, and O145 serogroups and ATCC(®) 43895(™) strain in ground meat and 10% meat homogenate. E. coli O157 were reduced (p < 0.05) from 6.86 ± 0.2 to 4.56 ± 0.1 log CFU/g when exposed to pressure of 650 MPa for 7 min. Corresponding reductions (p < 0.05) for non-O157 E. coli were from 6.98 ± 0.3 to 4.72 ± 0.1. The D-values at 650 MPa were 3.71 and 3.47 min for O157 and non-O157 serogroups, respectively. Presence of 1% lactic acid to a great extent augmented (p < 0.05) decontamination efficacy of the treatment in meat homogenate resulting in up to 5.6 and 6.0 log CFU/mL reductions for O157 and non-O157 serogroups, respectively. Among the tested serogroups, the wild-type and rifampicin-resistant phenotypes exhibited (p ≥ 0.05) comparable pressure sensitivity. Thus, these two phenotypes could be used interchangeably in validation studies. Our results also illustrate that, application of elevated hydrostatic pressure could be utilized for assuring safety of ground and non-intact meat products against various serogroups of Shiga toxin-producing E. coli. Addition of 1% lactic acid additionally provided industrially appreciable augmentation in efficacy of the pressure-based treatments. Public Library of Science 2021-02-18 /pmc/articles/PMC7891723/ /pubmed/33600440 http://dx.doi.org/10.1371/journal.pone.0246735 Text en © 2021 Allison, Fouladkhah http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Allison, Abimbola
Fouladkhah, Aliyar Cyrus
Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title_full Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title_fullStr Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title_full_unstemmed Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title_short Sensitivity of wild-type and rifampicin-resistant O157 and non-O157 Shiga toxin-producing Escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
title_sort sensitivity of wild-type and rifampicin-resistant o157 and non-o157 shiga toxin-producing escherichia coli to elevated hydrostatic pressure and lactic acid in ground meat and meat homogenate
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891723/
https://www.ncbi.nlm.nih.gov/pubmed/33600440
http://dx.doi.org/10.1371/journal.pone.0246735
work_keys_str_mv AT allisonabimbola sensitivityofwildtypeandrifampicinresistanto157andnono157shigatoxinproducingescherichiacolitoelevatedhydrostaticpressureandlacticacidingroundmeatandmeathomogenate
AT fouladkhahaliyarcyrus sensitivityofwildtypeandrifampicinresistanto157andnono157shigatoxinproducingescherichiacolitoelevatedhydrostaticpressureandlacticacidingroundmeatandmeathomogenate