Cargando…
System‐level analyses of keystone genes required for mammalian tooth development
When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system‐level dynamics of ge...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894285/ https://www.ncbi.nlm.nih.gov/pubmed/33128445 http://dx.doi.org/10.1002/jez.b.23009 |
_version_ | 1783653217916157952 |
---|---|
author | Hallikas, Outi Das Roy, Rishi Christensen, Mona M. Renvoisé, Elodie Sulic, Ana‐Marija Jernvall, Jukka |
author_facet | Hallikas, Outi Das Roy, Rishi Christensen, Mona M. Renvoisé, Elodie Sulic, Ana‐Marija Jernvall, Jukka |
author_sort | Hallikas, Outi |
collection | PubMed |
description | When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system‐level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single‐cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system‐level dynamics. Single‐cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ‐level expression, progression genes show high cell‐level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system‐level principles of gene expression can be detected using phenotypically defined gene categories. |
format | Online Article Text |
id | pubmed-7894285 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78942852021-03-02 System‐level analyses of keystone genes required for mammalian tooth development Hallikas, Outi Das Roy, Rishi Christensen, Mona M. Renvoisé, Elodie Sulic, Ana‐Marija Jernvall, Jukka J Exp Zool B Mol Dev Evol Research Articles When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system‐level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single‐cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system‐level dynamics. Single‐cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ‐level expression, progression genes show high cell‐level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system‐level principles of gene expression can be detected using phenotypically defined gene categories. John Wiley and Sons Inc. 2020-10-31 2021-01 /pmc/articles/PMC7894285/ /pubmed/33128445 http://dx.doi.org/10.1002/jez.b.23009 Text en © 2020 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hallikas, Outi Das Roy, Rishi Christensen, Mona M. Renvoisé, Elodie Sulic, Ana‐Marija Jernvall, Jukka System‐level analyses of keystone genes required for mammalian tooth development |
title | System‐level analyses of keystone genes required for mammalian tooth development |
title_full | System‐level analyses of keystone genes required for mammalian tooth development |
title_fullStr | System‐level analyses of keystone genes required for mammalian tooth development |
title_full_unstemmed | System‐level analyses of keystone genes required for mammalian tooth development |
title_short | System‐level analyses of keystone genes required for mammalian tooth development |
title_sort | system‐level analyses of keystone genes required for mammalian tooth development |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894285/ https://www.ncbi.nlm.nih.gov/pubmed/33128445 http://dx.doi.org/10.1002/jez.b.23009 |
work_keys_str_mv | AT hallikasouti systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment AT dasroyrishi systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment AT christensenmonam systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment AT renvoiseelodie systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment AT sulicanamarija systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment AT jernvalljukka systemlevelanalysesofkeystonegenesrequiredformammaliantoothdevelopment |