Cargando…
Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers
Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the ma...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894418/ https://www.ncbi.nlm.nih.gov/pubmed/33643696 http://dx.doi.org/10.1080/2162402X.2021.1885778 |
_version_ | 1783653246368219136 |
---|---|
author | Masemann, Dörthe Meissner, Ramona Schied, Tanja Lichty, Brian D Rapp, Ulf R Wixler, Viktor Ludwig, Stephan |
author_facet | Masemann, Dörthe Meissner, Ramona Schied, Tanja Lichty, Brian D Rapp, Ulf R Wixler, Viktor Ludwig, Stephan |
author_sort | Masemann, Dörthe |
collection | PubMed |
description | Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients. |
format | Online Article Text |
id | pubmed-7894418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-78944182021-02-26 Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers Masemann, Dörthe Meissner, Ramona Schied, Tanja Lichty, Brian D Rapp, Ulf R Wixler, Viktor Ludwig, Stephan Oncoimmunology Original Research Non-small cell lung cancers (NSCLCs) establish a highly immunosuppressive tumor microenvironment supporting cancer growth. To interfere with cancer-mediated immunosuppression, selective immune-checkpoint inhibitors (ICIs) have been approved as a standard-of-care treatment for NSCLCs. However, the majority of patients poorly respond to ICI-based immunotherapies. Oncolytic viruses are amongst the many promising immunomodulatory treatments tested as standalone therapy or in combination with ICIs to improve therapeutic outcome. Previously, we demonstrated the oncolytic and immunomodulatory efficacy of low-pathogenic influenza Aviruses (IAVs) against NSCLCs in immunocompetent transgenic mice with alung-specific overexpression of active Raf kinase (Raf-BxB). IAV infection not only resulted in significant primary virus-induced oncolysis, but also caused afunctional reversion of tumor-associated macrophages (TAMs) comprising additional anti-cancer activity. Here we show that NSCLCs as well as TAMs and cytotoxic immune cells overexpress IC molecules of the PD-L2/PD-1 and B7-H3 signaling axes. Thus, we aimed to combine oncolytic IAV-infection with ICIs to exploit the benefits of both anti-cancer approaches. Strikingly, IAV infection combined with the novel B7-H3 ICI led to increased levels of M1-polarized alveolar macrophages and increased lung infiltration by cytotoxic Tlymphocytes, which finally resulted in significantly improved oncolysis of about 80% of existing tumors. In contrast, application of clinically approved α-PD-1 IC antibodies alone or in combination with oncolytic IAV did not provide additional oncolytic or immunomodulatory efficacy. Thus, individualized therapy with synergistically acting oncolytic IAV and B7-H3 ICI might be an innovative future approach to target NSCLCs that are resistant to approved ICIs in patients. Taylor & Francis 2021-02-17 /pmc/articles/PMC7894418/ /pubmed/33643696 http://dx.doi.org/10.1080/2162402X.2021.1885778 Text en © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Masemann, Dörthe Meissner, Ramona Schied, Tanja Lichty, Brian D Rapp, Ulf R Wixler, Viktor Ludwig, Stephan Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title | Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_full | Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_fullStr | Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_full_unstemmed | Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_short | Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune- checkpoint inhibitors against IC-resistant lung cancers |
title_sort | synergistic anti-tumor efficacy of oncolytic influenza viruses and b7-h3 immune- checkpoint inhibitors against ic-resistant lung cancers |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894418/ https://www.ncbi.nlm.nih.gov/pubmed/33643696 http://dx.doi.org/10.1080/2162402X.2021.1885778 |
work_keys_str_mv | AT masemanndorthe synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT meissnerramona synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT schiedtanja synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT lichtybriand synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT rappulfr synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT wixlerviktor synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers AT ludwigstephan synergisticantitumorefficacyofoncolyticinfluenzavirusesandb7h3immunecheckpointinhibitorsagainsticresistantlungcancers |