Cargando…

TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51(K133A)

DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for...

Descripción completa

Detalles Bibliográficos
Autores principales: Ko, Jun Ho, Son, Mi Young, Zhou, Qing, Molnarova, Lucia, Song, Lambert, Mlcouskova, Jarmila, Jekabsons, Atis, Montagna, Cristina, Krejci, Lumir, Hasty, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896812/
https://www.ncbi.nlm.nih.gov/pubmed/33357432
http://dx.doi.org/10.1016/j.celrep.2020.108543
Descripción
Sumario:DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51(K133A) cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51(K133A) cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNA(K164R) increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2(H188A), implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2(H188A) associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.