Cargando…

The solution structures of higher-order human telomere G-quadruplex multimers

Human telomeres contain the repeat DNA sequence 5′-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3′ single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here...

Descripción completa

Detalles Bibliográficos
Autores principales: Monsen, Robert C, Chakravarthy, Srinivas, Dean, William L, Chaires, Jonathan B, Trent, John O
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897503/
https://www.ncbi.nlm.nih.gov/pubmed/33469644
http://dx.doi.org/10.1093/nar/gkaa1285
Descripción
Sumario:Human telomeres contain the repeat DNA sequence 5′-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3′ single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5′-d(TTAGGG)(n), with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.