Cargando…
Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering
[Image: see text] Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody–drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898269/ https://www.ncbi.nlm.nih.gov/pubmed/33476135 http://dx.doi.org/10.1021/acs.bioconjchem.0c00673 |
_version_ | 1783653830225821696 |
---|---|
author | Le Gall, Camille M. van der Schoot, Johan M. S. Ramos-Tomillero, Iván Khalily, Melek Parlak van Dalen, Floris J. Wijfjes, Zacharias Smeding, Liyan van Dalen, Duco Cammarata, Anna Bonger, Kimberly M. Figdor, Carl G. Scheeren, Ferenc A. Verdoes, Martijn |
author_facet | Le Gall, Camille M. van der Schoot, Johan M. S. Ramos-Tomillero, Iván Khalily, Melek Parlak van Dalen, Floris J. Wijfjes, Zacharias Smeding, Liyan van Dalen, Duco Cammarata, Anna Bonger, Kimberly M. Figdor, Carl G. Scheeren, Ferenc A. Verdoes, Martijn |
author_sort | Le Gall, Camille M. |
collection | PubMed |
description | [Image: see text] Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody–drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to target cells, further challenging stochastic labeling strategies. Thus, bioconjugation methods to reproducibly obtain defined homogeneous conjugates bearing multiple different cargo molecules, without compromising target affinity, are in demand. Here, we describe a straightforward CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to secrete Fab′ fragments bearing two distinct site-specific labeling motifs, which can be separately modified by two different sortase A mutants. We show that sequential genetic editing of the heavy chain (HC) and light chain (LC) loci enables the generation of a stable cell line that secretes a dual tagged Fab′ molecule (DTFab′), which can be easily isolated. To demonstrate feasibility, we functionalized the DTFab′ with two distinct cargos in a site-specific manner. This technology platform will be valuable in the development of multimodal imaging agents, theranostics, and next-generation ADCs. |
format | Online Article Text |
id | pubmed-7898269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-78982692021-02-23 Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering Le Gall, Camille M. van der Schoot, Johan M. S. Ramos-Tomillero, Iván Khalily, Melek Parlak van Dalen, Floris J. Wijfjes, Zacharias Smeding, Liyan van Dalen, Duco Cammarata, Anna Bonger, Kimberly M. Figdor, Carl G. Scheeren, Ferenc A. Verdoes, Martijn Bioconjug Chem [Image: see text] Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody–drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to target cells, further challenging stochastic labeling strategies. Thus, bioconjugation methods to reproducibly obtain defined homogeneous conjugates bearing multiple different cargo molecules, without compromising target affinity, are in demand. Here, we describe a straightforward CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to secrete Fab′ fragments bearing two distinct site-specific labeling motifs, which can be separately modified by two different sortase A mutants. We show that sequential genetic editing of the heavy chain (HC) and light chain (LC) loci enables the generation of a stable cell line that secretes a dual tagged Fab′ molecule (DTFab′), which can be easily isolated. To demonstrate feasibility, we functionalized the DTFab′ with two distinct cargos in a site-specific manner. This technology platform will be valuable in the development of multimodal imaging agents, theranostics, and next-generation ADCs. American Chemical Society 2021-01-21 2021-02-17 /pmc/articles/PMC7898269/ /pubmed/33476135 http://dx.doi.org/10.1021/acs.bioconjchem.0c00673 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Le Gall, Camille M. van der Schoot, Johan M. S. Ramos-Tomillero, Iván Khalily, Melek Parlak van Dalen, Floris J. Wijfjes, Zacharias Smeding, Liyan van Dalen, Duco Cammarata, Anna Bonger, Kimberly M. Figdor, Carl G. Scheeren, Ferenc A. Verdoes, Martijn Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering |
title | Dual Site-Specific Chemoenzymatic Antibody Fragment
Conjugation Using CRISPR-Based Hybridoma Engineering |
title_full | Dual Site-Specific Chemoenzymatic Antibody Fragment
Conjugation Using CRISPR-Based Hybridoma Engineering |
title_fullStr | Dual Site-Specific Chemoenzymatic Antibody Fragment
Conjugation Using CRISPR-Based Hybridoma Engineering |
title_full_unstemmed | Dual Site-Specific Chemoenzymatic Antibody Fragment
Conjugation Using CRISPR-Based Hybridoma Engineering |
title_short | Dual Site-Specific Chemoenzymatic Antibody Fragment
Conjugation Using CRISPR-Based Hybridoma Engineering |
title_sort | dual site-specific chemoenzymatic antibody fragment
conjugation using crispr-based hybridoma engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898269/ https://www.ncbi.nlm.nih.gov/pubmed/33476135 http://dx.doi.org/10.1021/acs.bioconjchem.0c00673 |
work_keys_str_mv | AT legallcamillem dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT vanderschootjohanms dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT ramostomilleroivan dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT khalilymelekparlak dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT vandalenflorisj dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT wijfjeszacharias dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT smedingliyan dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT vandalenduco dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT cammarataanna dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT bongerkimberlym dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT figdorcarlg dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT scheerenferenca dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering AT verdoesmartijn dualsitespecificchemoenzymaticantibodyfragmentconjugationusingcrisprbasedhybridomaengineering |