Cargando…

Mechanochemically Triggered Topology Changes in Expanded Porphyrins

A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to...

Descripción completa

Detalles Bibliográficos
Autores principales: Bettens, Tom, Hoffmann, Marvin, Alonso, Mercedes, Geerlings, Paul, Dreuw, Andreas, De Proft, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898923/
https://www.ncbi.nlm.nih.gov/pubmed/33170967
http://dx.doi.org/10.1002/chem.202003869
_version_ 1783653966789214208
author Bettens, Tom
Hoffmann, Marvin
Alonso, Mercedes
Geerlings, Paul
Dreuw, Andreas
De Proft, Frank
author_facet Bettens, Tom
Hoffmann, Marvin
Alonso, Mercedes
Geerlings, Paul
Dreuw, Andreas
De Proft, Frank
author_sort Bettens, Tom
collection PubMed
description A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub‐1 nn) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel–Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two‐sided topology and others favor Möbius single‐sided topologies. The meso‐substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation.
format Online
Article
Text
id pubmed-7898923
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78989232021-03-03 Mechanochemically Triggered Topology Changes in Expanded Porphyrins Bettens, Tom Hoffmann, Marvin Alonso, Mercedes Geerlings, Paul Dreuw, Andreas De Proft, Frank Chemistry Full Papers A hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub‐1 nn) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies. This approach is supported by quantum mechanochemical calculations. Force distribution analyses reveal that [28]hexaphyrin selectively allocates the external mechanical energy to molecular regions that trigger Hückel–Möbius interconversions, explaining why certain pulling scenarios favor the Hückel two‐sided topology and others favor Möbius single‐sided topologies. The meso‐substitution pattern on [28]hexaphyrin determines whether the energy difference between the different topologies can be overcome by mechanical activation. John Wiley and Sons Inc. 2021-01-18 2021-02-15 /pmc/articles/PMC7898923/ /pubmed/33170967 http://dx.doi.org/10.1002/chem.202003869 Text en © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Bettens, Tom
Hoffmann, Marvin
Alonso, Mercedes
Geerlings, Paul
Dreuw, Andreas
De Proft, Frank
Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title_full Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title_fullStr Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title_full_unstemmed Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title_short Mechanochemically Triggered Topology Changes in Expanded Porphyrins
title_sort mechanochemically triggered topology changes in expanded porphyrins
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898923/
https://www.ncbi.nlm.nih.gov/pubmed/33170967
http://dx.doi.org/10.1002/chem.202003869
work_keys_str_mv AT bettenstom mechanochemicallytriggeredtopologychangesinexpandedporphyrins
AT hoffmannmarvin mechanochemicallytriggeredtopologychangesinexpandedporphyrins
AT alonsomercedes mechanochemicallytriggeredtopologychangesinexpandedporphyrins
AT geerlingspaul mechanochemicallytriggeredtopologychangesinexpandedporphyrins
AT dreuwandreas mechanochemicallytriggeredtopologychangesinexpandedporphyrins
AT deproftfrank mechanochemicallytriggeredtopologychangesinexpandedporphyrins