Cargando…
Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906464/ https://www.ncbi.nlm.nih.gov/pubmed/33630959 http://dx.doi.org/10.1371/journal.pone.0247841 |
_version_ | 1783655293774725120 |
---|---|
author | Pereira, Gabriel Rodrigues Coutinho Vieira, Bárbara de Azevedo Abrahim De Mesquita, Joelma Freire |
author_facet | Pereira, Gabriel Rodrigues Coutinho Vieira, Bárbara de Azevedo Abrahim De Mesquita, Joelma Freire |
author_sort | Pereira, Gabriel Rodrigues Coutinho |
collection | PubMed |
description | Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases. This work aims to characterize in silico the structural and functional effects of SOD1 protein variants. Missense mutations in SOD1 were compiled from the literature and databases. Twelve algorithms were used to predict the functional and stability effects of these mutations. ConSurf was used to estimate the evolutionary conservation of SOD1 amino-acids. GROMACS was used to perform molecular dynamics (MD) simulations of SOD1 wild-type and variants A4V, D90A, H46R, and I113T, which account for approximately half of all ALS-SOD1 cases in the United States, Europe, Japan, and United Kingdom, respectively. 233 missense mutations in SOD1 protein were compiled from the databases and literature consulted. The predictive analyses pointed to an elevated rate of deleterious and destabilizing predictions for the analyzed variants, indicating their harmful effects. The ConSurf analysis suggested that mutations in SOD1 mainly affect conserved and possibly functionally essential amino acids. The MD analyses pointed to flexibility and essential dynamics alterations at the electrostatic and metal-binding loops of variants A4V, D90A, H46R, and I113T that could lead to aberrant interactions triggering toxic protein aggregation. These alterations may have harmful implications for SOD1 and explain their association with ALS. Understanding the effects of SOD1 mutations on protein structure and function facilitates the design of further experiments and provides relevant information on the molecular mechanism of pathology, which may contribute to improvements in existing treatments for ALS. |
format | Online Article Text |
id | pubmed-7906464 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79064642021-03-03 Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis Pereira, Gabriel Rodrigues Coutinho Vieira, Bárbara de Azevedo Abrahim De Mesquita, Joelma Freire PLoS One Research Article Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases. This work aims to characterize in silico the structural and functional effects of SOD1 protein variants. Missense mutations in SOD1 were compiled from the literature and databases. Twelve algorithms were used to predict the functional and stability effects of these mutations. ConSurf was used to estimate the evolutionary conservation of SOD1 amino-acids. GROMACS was used to perform molecular dynamics (MD) simulations of SOD1 wild-type and variants A4V, D90A, H46R, and I113T, which account for approximately half of all ALS-SOD1 cases in the United States, Europe, Japan, and United Kingdom, respectively. 233 missense mutations in SOD1 protein were compiled from the databases and literature consulted. The predictive analyses pointed to an elevated rate of deleterious and destabilizing predictions for the analyzed variants, indicating their harmful effects. The ConSurf analysis suggested that mutations in SOD1 mainly affect conserved and possibly functionally essential amino acids. The MD analyses pointed to flexibility and essential dynamics alterations at the electrostatic and metal-binding loops of variants A4V, D90A, H46R, and I113T that could lead to aberrant interactions triggering toxic protein aggregation. These alterations may have harmful implications for SOD1 and explain their association with ALS. Understanding the effects of SOD1 mutations on protein structure and function facilitates the design of further experiments and provides relevant information on the molecular mechanism of pathology, which may contribute to improvements in existing treatments for ALS. Public Library of Science 2021-02-25 /pmc/articles/PMC7906464/ /pubmed/33630959 http://dx.doi.org/10.1371/journal.pone.0247841 Text en © 2021 Pereira et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pereira, Gabriel Rodrigues Coutinho Vieira, Bárbara de Azevedo Abrahim De Mesquita, Joelma Freire Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title | Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title_full | Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title_fullStr | Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title_full_unstemmed | Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title_short | Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis |
title_sort | comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (sod1) variants related to amyotrophic lateral sclerosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906464/ https://www.ncbi.nlm.nih.gov/pubmed/33630959 http://dx.doi.org/10.1371/journal.pone.0247841 |
work_keys_str_mv | AT pereiragabrielrodriguescoutinho comprehensiveinsilicoanalysisandmoleculardynamicsofthesuperoxidedismutase1sod1variantsrelatedtoamyotrophiclateralsclerosis AT vieirabarbaradeazevedoabrahim comprehensiveinsilicoanalysisandmoleculardynamicsofthesuperoxidedismutase1sod1variantsrelatedtoamyotrophiclateralsclerosis AT demesquitajoelmafreire comprehensiveinsilicoanalysisandmoleculardynamicsofthesuperoxidedismutase1sod1variantsrelatedtoamyotrophiclateralsclerosis |