Video-Capable Ultrasonic Wireless Communications through Biological Tissues

The use of wireless implanted medical devices (IMDs) is growing because they facilitate monitoring of patients at home and during normal activities, reduce the discomfort of patients and reduce the likelihood of infection associated with trailing wires. Currently, radiofrequency (RF) electromagnetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tabak, Gizem, Yang, Sijung, Miller, Rita J., Oelze, Michael L., Singer, Andrew C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906945/
https://www.ncbi.nlm.nih.gov/pubmed/32870788
http://dx.doi.org/10.1109/TUFFC.2020.3020776
Descripción
Sumario:The use of wireless implanted medical devices (IMDs) is growing because they facilitate monitoring of patients at home and during normal activities, reduce the discomfort of patients and reduce the likelihood of infection associated with trailing wires. Currently, radiofrequency (RF) electromagnetic waves are the most commonly used method for communicating wirelessly with IMDs. However, due to the restrictions on the available bandwidth and the employable power, data rates of RF-based IMDs are limited to 267 kbps. Considering standard definition video streaming requires data rates of 1.2 mbps and high definition requires 3 mbps, it is not possible to use the RF electromagnetic communications for high data rate communication applications such as video streaming. In this work, an alternative method that utilizes ultrasonic waves to relay information at high data rates is introduced. An advanced quadrature amplitude modulation (QAM) modem with phase-compensating, sparse decision feedback equalizer (DFE) is tailored to realize the full potential of the ultrasonic channel through biological tissues. The proposed system is tested in a variety of scenarios, including both simulations with finite impulse response (FIR) channel models, and real physical transmission experiments with ex vivo beef liver and pork chop samples as well as in situ rabbit abdomen. Consequently, the simulations demonstrated that video-capable data rates can be achieved with milimeter-sized transducers. Real physical experiments confirmed data rates of 6.7, 4.4, 4 and 3.2 mbps through water, ex vivo beef liver, ex vivo pork chop and in situ rabbit abdomen, respectively.