Cargando…

The Protein-Binding Behavior of Platinum Anticancer Drugs in Blood Revealed by Mass Spectrometry

Cisplatin and its analogues are widely used as chemotherapeutic agents in clinical practice. After being intravenously administrated, a substantial amount of platinum will bind with proteins in the blood. This binding is vital for the transport, distribution, and metabolism of drugs; however, toxici...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jingchen, Tao, Jianmei, Jia, Shuailong, Wang, Meiqin, Jiang, Hongliang, Du, Zhifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911130/
https://www.ncbi.nlm.nih.gov/pubmed/33572935
http://dx.doi.org/10.3390/ph14020104
Descripción
Sumario:Cisplatin and its analogues are widely used as chemotherapeutic agents in clinical practice. After being intravenously administrated, a substantial amount of platinum will bind with proteins in the blood. This binding is vital for the transport, distribution, and metabolism of drugs; however, toxicity can also occur from the irreversible binding between biologically active proteins and platinum drugs. Therefore, it is very important to study the protein-binding behavior of platinum drugs in blood. This review summarizes mass spectrometry-based strategies to identify and quantitate the proteins binding with platinum anticancer drugs in blood, such as offline high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC–ICP-MS) combined with electrospray ionization mass spectrometry (ESI-MS/MS) and multidimensional LC–ESI-MS/MS. The identification of in vivo targets in blood cannot be accomplished without first studying the protein-binding behavior of platinum drugs in vitro; therefore, relevant studies are also summarized. This knowledge will further our understanding of the pharmacokinetics and toxicity of platinum anticancer drugs, and it will be beneficial for the rational design of metal-based anticancer drugs.