Cargando…

The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning

Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 in...

Descripción completa

Detalles Bibliográficos
Autores principales: Chrystal, Paul W., French, Curtis R., Jean, Francesca, Havrylov, Serhiy, van Baarle, Suey, Peturson, Ann-Marie, Xu, Pengfei, Crump, J. Gage, Pilgrim, David B., Lehmann, Ordan J., Waskiewicz, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912076/
https://www.ncbi.nlm.nih.gov/pubmed/33530637
http://dx.doi.org/10.3390/genes12020170
_version_ 1783656492003491840
author Chrystal, Paul W.
French, Curtis R.
Jean, Francesca
Havrylov, Serhiy
van Baarle, Suey
Peturson, Ann-Marie
Xu, Pengfei
Crump, J. Gage
Pilgrim, David B.
Lehmann, Ordan J.
Waskiewicz, Andrew J.
author_facet Chrystal, Paul W.
French, Curtis R.
Jean, Francesca
Havrylov, Serhiy
van Baarle, Suey
Peturson, Ann-Marie
Xu, Pengfei
Crump, J. Gage
Pilgrim, David B.
Lehmann, Ordan J.
Waskiewicz, Andrew J.
author_sort Chrystal, Paul W.
collection PubMed
description Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a(−/−); foxc1b(−/−) homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients.
format Online
Article
Text
id pubmed-7912076
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-79120762021-02-28 The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning Chrystal, Paul W. French, Curtis R. Jean, Francesca Havrylov, Serhiy van Baarle, Suey Peturson, Ann-Marie Xu, Pengfei Crump, J. Gage Pilgrim, David B. Lehmann, Ordan J. Waskiewicz, Andrew J. Genes (Basel) Article Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a(−/−); foxc1b(−/−) homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients. MDPI 2021-01-26 /pmc/articles/PMC7912076/ /pubmed/33530637 http://dx.doi.org/10.3390/genes12020170 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chrystal, Paul W.
French, Curtis R.
Jean, Francesca
Havrylov, Serhiy
van Baarle, Suey
Peturson, Ann-Marie
Xu, Pengfei
Crump, J. Gage
Pilgrim, David B.
Lehmann, Ordan J.
Waskiewicz, Andrew J.
The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title_full The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title_fullStr The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title_full_unstemmed The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title_short The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
title_sort axenfeld–rieger syndrome gene foxc1 contributes to left–right patterning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912076/
https://www.ncbi.nlm.nih.gov/pubmed/33530637
http://dx.doi.org/10.3390/genes12020170
work_keys_str_mv AT chrystalpaulw theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT frenchcurtisr theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT jeanfrancesca theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT havrylovserhiy theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT vanbaarlesuey theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT petursonannmarie theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT xupengfei theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT crumpjgage theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT pilgrimdavidb theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT lehmannordanj theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT waskiewiczandrewj theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT chrystalpaulw axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT frenchcurtisr axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT jeanfrancesca axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT havrylovserhiy axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT vanbaarlesuey axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT petursonannmarie axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT xupengfei axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT crumpjgage axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT pilgrimdavidb axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT lehmannordanj axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning
AT waskiewiczandrewj axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning