Cargando…
The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912076/ https://www.ncbi.nlm.nih.gov/pubmed/33530637 http://dx.doi.org/10.3390/genes12020170 |
_version_ | 1783656492003491840 |
---|---|
author | Chrystal, Paul W. French, Curtis R. Jean, Francesca Havrylov, Serhiy van Baarle, Suey Peturson, Ann-Marie Xu, Pengfei Crump, J. Gage Pilgrim, David B. Lehmann, Ordan J. Waskiewicz, Andrew J. |
author_facet | Chrystal, Paul W. French, Curtis R. Jean, Francesca Havrylov, Serhiy van Baarle, Suey Peturson, Ann-Marie Xu, Pengfei Crump, J. Gage Pilgrim, David B. Lehmann, Ordan J. Waskiewicz, Andrew J. |
author_sort | Chrystal, Paul W. |
collection | PubMed |
description | Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a(−/−); foxc1b(−/−) homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients. |
format | Online Article Text |
id | pubmed-7912076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79120762021-02-28 The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning Chrystal, Paul W. French, Curtis R. Jean, Francesca Havrylov, Serhiy van Baarle, Suey Peturson, Ann-Marie Xu, Pengfei Crump, J. Gage Pilgrim, David B. Lehmann, Ordan J. Waskiewicz, Andrew J. Genes (Basel) Article Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a(−/−); foxc1b(−/−) homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients. MDPI 2021-01-26 /pmc/articles/PMC7912076/ /pubmed/33530637 http://dx.doi.org/10.3390/genes12020170 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chrystal, Paul W. French, Curtis R. Jean, Francesca Havrylov, Serhiy van Baarle, Suey Peturson, Ann-Marie Xu, Pengfei Crump, J. Gage Pilgrim, David B. Lehmann, Ordan J. Waskiewicz, Andrew J. The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title | The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title_full | The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title_fullStr | The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title_full_unstemmed | The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title_short | The Axenfeld–Rieger Syndrome Gene FOXC1 Contributes to Left–Right Patterning |
title_sort | axenfeld–rieger syndrome gene foxc1 contributes to left–right patterning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912076/ https://www.ncbi.nlm.nih.gov/pubmed/33530637 http://dx.doi.org/10.3390/genes12020170 |
work_keys_str_mv | AT chrystalpaulw theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT frenchcurtisr theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT jeanfrancesca theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT havrylovserhiy theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT vanbaarlesuey theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT petursonannmarie theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT xupengfei theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT crumpjgage theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT pilgrimdavidb theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT lehmannordanj theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT waskiewiczandrewj theaxenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT chrystalpaulw axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT frenchcurtisr axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT jeanfrancesca axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT havrylovserhiy axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT vanbaarlesuey axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT petursonannmarie axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT xupengfei axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT crumpjgage axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT pilgrimdavidb axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT lehmannordanj axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning AT waskiewiczandrewj axenfeldriegersyndromegenefoxc1contributestoleftrightpatterning |