Cargando…
Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood–brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912456/ https://www.ncbi.nlm.nih.gov/pubmed/33573093 http://dx.doi.org/10.3390/ph14020107 |
_version_ | 1783656581341118464 |
---|---|
author | Pastvova, Nikola Dolezel, Petr Mlejnek, Petr |
author_facet | Pastvova, Nikola Dolezel, Petr Mlejnek, Petr |
author_sort | Pastvova, Nikola |
collection | PubMed |
description | Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood–brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs. |
format | Online Article Text |
id | pubmed-7912456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79124562021-02-28 Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters Pastvova, Nikola Dolezel, Petr Mlejnek, Petr Pharmaceuticals (Basel) Article Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and has a poor prognosis. Complex genetic alterations and the protective effect of the blood–brain barrier (BBB) have so far hampered effective treatment. Here, we investigated the cytotoxic effects of heat shock protein 90 (HSP90) inhibitors, geldanamycin (GDN) and 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), in a panel of glioma tumor cell lines with various genetic alterations. We also assessed the ability of the main drug transporters, ABCB1 and ABCG2, to efflux GDN and 17-AAG. We found that GDN and 17-AAG induced extensive cell death with the morphological and biochemical hallmarks of apoptosis in all studied glioma cell lines at sub-micro-molar and nanomolar concentrations. Moderate efflux efficacy of GDN and 17-AAG mediated by ABCB1 was observed. There was an insignificant and low efflux efficacy of GDN and 17-AAG mediated by ABCG2. Conclusion: GDN and 17-AAG, in particular, exhibited strong proapoptotic effects in glioma tumor cell lines irrespective of genetic alterations. GDN and 17-AAG appeared to be weak substrates of ABCB1 and ABCG2. Therefore, the BBB would compromise their cytotoxic effects only partially. We hypothesize that GBM patients may benefit from 17-AAG either as a single agent or in combination with other drugs. MDPI 2021-01-29 /pmc/articles/PMC7912456/ /pubmed/33573093 http://dx.doi.org/10.3390/ph14020107 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pastvova, Nikola Dolezel, Petr Mlejnek, Petr Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title | Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title_full | Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title_fullStr | Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title_full_unstemmed | Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title_short | Heat Shock Protein Inhibitor 17-Allyamino-17-Demethoxygeldanamycin, a Potent Inductor of Apoptosis in Human Glioma Tumor Cell Lines, Is a Weak Substrate for ABCB1 and ABCG2 Transporters |
title_sort | heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin, a potent inductor of apoptosis in human glioma tumor cell lines, is a weak substrate for abcb1 and abcg2 transporters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912456/ https://www.ncbi.nlm.nih.gov/pubmed/33573093 http://dx.doi.org/10.3390/ph14020107 |
work_keys_str_mv | AT pastvovanikola heatshockproteininhibitor17allyamino17demethoxygeldanamycinapotentinductorofapoptosisinhumangliomatumorcelllinesisaweaksubstrateforabcb1andabcg2transporters AT dolezelpetr heatshockproteininhibitor17allyamino17demethoxygeldanamycinapotentinductorofapoptosisinhumangliomatumorcelllinesisaweaksubstrateforabcb1andabcg2transporters AT mlejnekpetr heatshockproteininhibitor17allyamino17demethoxygeldanamycinapotentinductorofapoptosisinhumangliomatumorcelllinesisaweaksubstrateforabcb1andabcg2transporters |