Cargando…
Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains
The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidize...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914449/ https://www.ncbi.nlm.nih.gov/pubmed/33557377 http://dx.doi.org/10.3390/biom11020220 |
_version_ | 1783657004954288128 |
---|---|
author | Ausili, Alessio Rodríguez-González, Inés Torrecillas, Alejandro Teruel, José A. Gómez-Fernández, Juan C. |
author_facet | Ausili, Alessio Rodríguez-González, Inés Torrecillas, Alejandro Teruel, José A. Gómez-Fernández, Juan C. |
author_sort | Ausili, Alessio |
collection | PubMed |
description | The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and (31)P-NMR spectroscopy were used to study the effect of DES on the L(α)-to-H(II) phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the (1)H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers. |
format | Online Article Text |
id | pubmed-7914449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79144492021-03-01 Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains Ausili, Alessio Rodríguez-González, Inés Torrecillas, Alejandro Teruel, José A. Gómez-Fernández, Juan C. Biomolecules Article The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and (31)P-NMR spectroscopy were used to study the effect of DES on the L(α)-to-H(II) phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the (1)H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers. MDPI 2021-02-04 /pmc/articles/PMC7914449/ /pubmed/33557377 http://dx.doi.org/10.3390/biom11020220 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ausili, Alessio Rodríguez-González, Inés Torrecillas, Alejandro Teruel, José A. Gómez-Fernández, Juan C. Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title | Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title_full | Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title_fullStr | Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title_full_unstemmed | Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title_short | Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains |
title_sort | diethylstilbestrol modifies the structure of model membranes and is localized close to the first carbons of the fatty acyl chains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914449/ https://www.ncbi.nlm.nih.gov/pubmed/33557377 http://dx.doi.org/10.3390/biom11020220 |
work_keys_str_mv | AT ausilialessio diethylstilbestrolmodifiesthestructureofmodelmembranesandislocalizedclosetothefirstcarbonsofthefattyacylchains AT rodriguezgonzalezines diethylstilbestrolmodifiesthestructureofmodelmembranesandislocalizedclosetothefirstcarbonsofthefattyacylchains AT torrecillasalejandro diethylstilbestrolmodifiesthestructureofmodelmembranesandislocalizedclosetothefirstcarbonsofthefattyacylchains AT terueljosea diethylstilbestrolmodifiesthestructureofmodelmembranesandislocalizedclosetothefirstcarbonsofthefattyacylchains AT gomezfernandezjuanc diethylstilbestrolmodifiesthestructureofmodelmembranesandislocalizedclosetothefirstcarbonsofthefattyacylchains |