Cargando…
RobotP: A Benchmark Dataset for 6D Object Pose Estimation
Deep learning has achieved great success on robotic vision tasks. However, when compared with other vision-based tasks, it is difficult to collect a representative and sufficiently large training set for six-dimensional (6D) object pose estimation, due to the inherent difficulty of data collection....
Autores principales: | Yuan, Honglin, Hoogenkamp, Tim, Veltkamp, Remco C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917891/ https://www.ncbi.nlm.nih.gov/pubmed/33670325 http://dx.doi.org/10.3390/s21041299 |
Ejemplares similares
-
Object Detection and 6D Pose Estimation for Precise Robotic Manipulation in Unstructured Environments
por: di Castro, Mario, et al.
Publicado: (2020) -
Estimation of 6D Object Pose Using a 2D Bounding Box
por: Hong, Yong, et al.
Publicado: (2021) -
6D Object Pose Estimation Based on Cross-Modality Feature Fusion
por: Jiang, Meng, et al.
Publicado: (2023) -
6IMPOSE: bridging the reality gap in 6D pose estimation for robotic grasping
por: Cao, Hongpeng, et al.
Publicado: (2023) -
Finding the Optimal Pose of 2D LLT Sensors to Improve Object Pose Estimation
por: Heczko, Dominik, et al.
Publicado: (2022)