Cargando…
2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing
Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technologies can reduce the accuracy of intron identificati...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919322/ https://www.ncbi.nlm.nih.gov/pubmed/33648554 http://dx.doi.org/10.1186/s13059-021-02296-0 |
Sumario: | Transcription of eukaryotic genomes involves complex alternative processing of RNAs. Sequencing of full-length RNAs using long reads reveals the true complexity of processing. However, the relatively high error rates of long-read sequencing technologies can reduce the accuracy of intron identification. Here we apply alignment metrics and machine-learning-derived sequence information to filter spurious splice junctions from long-read alignments and use the remaining junctions to guide realignment in a two-pass approach. This method, available in the software package 2passtools (https://github.com/bartongroup/2passtools), improves the accuracy of spliced alignment and transcriptome assembly for species both with and without existing high-quality annotations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-021-02296-0. |
---|