Cargando…
A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response
Cancer treatments can be highly toxic and frequently only a subset of the patient population will benefit from a given treatment. Tumour genetic makeup plays an important role in cancer drug sensitivity. We suspect that gene expression markers could be used as a decision aid for treatment selection...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920352/ https://www.ncbi.nlm.nih.gov/pubmed/33493149 http://dx.doi.org/10.1371/journal.pcbi.1008066 |
_version_ | 1783658258244829184 |
---|---|
author | Koukouli, Evanthia Wang, Dennis Dondelinger, Frank Park, Juhyun |
author_facet | Koukouli, Evanthia Wang, Dennis Dondelinger, Frank Park, Juhyun |
author_sort | Koukouli, Evanthia |
collection | PubMed |
description | Cancer treatments can be highly toxic and frequently only a subset of the patient population will benefit from a given treatment. Tumour genetic makeup plays an important role in cancer drug sensitivity. We suspect that gene expression markers could be used as a decision aid for treatment selection or dosage tuning. Using in vitro cancer cell line dose-response and gene expression data from the Genomics of Drug Sensitivity in Cancer (GDSC) project, we build a dose-varying regression model. Unlike existing approaches, this allows us to estimate dosage-dependent associations with gene expression. We include the transcriptomic profiles as dose-invariant covariates into the regression model and assume that their effect varies smoothly over the dosage levels. A two-stage variable selection algorithm (variable screening followed by penalized regression) is used to identify genetic factors that are associated with drug response over the varying dosages. We evaluate the effectiveness of our method using simulation studies focusing on the choice of tuning parameters and cross-validation for predictive accuracy assessment. We further apply the model to data from five BRAF targeted compounds applied to different cancer cell lines under different dosage levels. We highlight the dosage-dependent dynamics of the associations between the selected genes and drug response, and we perform pathway enrichment analysis to show that the selected genes play an important role in pathways related to tumorigenesis and DNA damage response. |
format | Online Article Text |
id | pubmed-7920352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79203522021-03-09 A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response Koukouli, Evanthia Wang, Dennis Dondelinger, Frank Park, Juhyun PLoS Comput Biol Research Article Cancer treatments can be highly toxic and frequently only a subset of the patient population will benefit from a given treatment. Tumour genetic makeup plays an important role in cancer drug sensitivity. We suspect that gene expression markers could be used as a decision aid for treatment selection or dosage tuning. Using in vitro cancer cell line dose-response and gene expression data from the Genomics of Drug Sensitivity in Cancer (GDSC) project, we build a dose-varying regression model. Unlike existing approaches, this allows us to estimate dosage-dependent associations with gene expression. We include the transcriptomic profiles as dose-invariant covariates into the regression model and assume that their effect varies smoothly over the dosage levels. A two-stage variable selection algorithm (variable screening followed by penalized regression) is used to identify genetic factors that are associated with drug response over the varying dosages. We evaluate the effectiveness of our method using simulation studies focusing on the choice of tuning parameters and cross-validation for predictive accuracy assessment. We further apply the model to data from five BRAF targeted compounds applied to different cancer cell lines under different dosage levels. We highlight the dosage-dependent dynamics of the associations between the selected genes and drug response, and we perform pathway enrichment analysis to show that the selected genes play an important role in pathways related to tumorigenesis and DNA damage response. Public Library of Science 2021-01-25 /pmc/articles/PMC7920352/ /pubmed/33493149 http://dx.doi.org/10.1371/journal.pcbi.1008066 Text en © 2021 Koukouli et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Koukouli, Evanthia Wang, Dennis Dondelinger, Frank Park, Juhyun A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title | A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title_full | A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title_fullStr | A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title_full_unstemmed | A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title_short | A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
title_sort | regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920352/ https://www.ncbi.nlm.nih.gov/pubmed/33493149 http://dx.doi.org/10.1371/journal.pcbi.1008066 |
work_keys_str_mv | AT koukoulievanthia aregularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT wangdennis aregularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT dondelingerfrank aregularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT parkjuhyun aregularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT koukoulievanthia regularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT wangdennis regularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT dondelingerfrank regularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse AT parkjuhyun regularizedfunctionalregressionmodelenablingtranscriptomewidedosagedependentassociationstudyofcancerdrugresponse |