Cargando…
A regularized functional regression model enabling transcriptome-wide dosage-dependent association study of cancer drug response
Cancer treatments can be highly toxic and frequently only a subset of the patient population will benefit from a given treatment. Tumour genetic makeup plays an important role in cancer drug sensitivity. We suspect that gene expression markers could be used as a decision aid for treatment selection...
Autores principales: | Koukouli, Evanthia, Wang, Dennis, Dondelinger, Frank, Park, Juhyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920352/ https://www.ncbi.nlm.nih.gov/pubmed/33493149 http://dx.doi.org/10.1371/journal.pcbi.1008066 |
Ejemplares similares
-
Regularized regression method for genome-wide association studies
por: Liu, Jin, et al.
Publicado: (2011) -
The joint lasso: high-dimensional regression for group structured data
por: Dondelinger, Frank, et al.
Publicado: (2018) -
Robust priors for regularized regression
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2022) -
Network regression analysis in transcriptome-wide association studies
por: Jin, Xiuyuan, et al.
Publicado: (2022) -
Coherent pathway enrichment estimation by modeling inter-pathway dependencies using regularized regression
por: Jablonski, Kim Philipp, et al.
Publicado: (2023)