Cargando…
Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis
Lipid rafts are a primary target in studies of amyloid β (Aβ) cytotoxicity in neurons. Exogenous Aβ peptides bind to lipid rafts, which in turn play a key role in Aβ uptake, leading to the formation of neurotoxic intracellular Aβ aggregates. On the other hand, dysregulation of intracellular calcium...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923178/ https://www.ncbi.nlm.nih.gov/pubmed/33671444 http://dx.doi.org/10.3390/ijms22041984 |
_version_ | 1783658854359236608 |
---|---|
author | Poejo, Joana Salazar, Jairo Mata, Ana M. Gutierrez-Merino, Carlos |
author_facet | Poejo, Joana Salazar, Jairo Mata, Ana M. Gutierrez-Merino, Carlos |
author_sort | Poejo, Joana |
collection | PubMed |
description | Lipid rafts are a primary target in studies of amyloid β (Aβ) cytotoxicity in neurons. Exogenous Aβ peptides bind to lipid rafts, which in turn play a key role in Aβ uptake, leading to the formation of neurotoxic intracellular Aβ aggregates. On the other hand, dysregulation of intracellular calcium homeostasis in neurons has been observed in Alzheimer’s disease (AD). In a previous work, we showed that Aβ(1–42), the prevalent Aβ peptide found in the amyloid plaques of AD patients, binds with high affinity to purified calmodulin (CaM), with a dissociation constant ≈1 nM. In this work, to experimentally assess the Aβ(1–42) binding capacity to intracellular CaM, we used primary cultures of mature cerebellar granule neurons (CGN) as a neuronal model. Our results showed a large complexation of submicromolar concentrations of Aβ(1–42) dimers by CaM in CGN, up to 120 ± 13 picomoles of Aβ(1–42) /2.5 × 10(6) cells. Using fluorescence microscopy imaging, we showed an extensive co-localization of CaM and Aβ(1–42) in lipid rafts in CGN stained with up to 100 picomoles of Aβ(1–42)-HiLyteTM-Fluor555 monomers. Intracellular Aβ(1–42) concentration in this range was achieved by 2 h incubation of CGN with 2 μM Aβ(1–42), and this treatment lowered the resting cytosolic calcium of mature CGN in partially depolarizing 25 mM potassium medium. We conclude that the primary cause of the resting cytosolic calcium decrease is the inhibition of L-type calcium channels of CGN by Aβ(1–42) dimers, whose activity is inhibited by CaM:Aβ(1–42) complexes bound to lipid rafts. |
format | Online Article Text |
id | pubmed-7923178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79231782021-03-03 Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis Poejo, Joana Salazar, Jairo Mata, Ana M. Gutierrez-Merino, Carlos Int J Mol Sci Article Lipid rafts are a primary target in studies of amyloid β (Aβ) cytotoxicity in neurons. Exogenous Aβ peptides bind to lipid rafts, which in turn play a key role in Aβ uptake, leading to the formation of neurotoxic intracellular Aβ aggregates. On the other hand, dysregulation of intracellular calcium homeostasis in neurons has been observed in Alzheimer’s disease (AD). In a previous work, we showed that Aβ(1–42), the prevalent Aβ peptide found in the amyloid plaques of AD patients, binds with high affinity to purified calmodulin (CaM), with a dissociation constant ≈1 nM. In this work, to experimentally assess the Aβ(1–42) binding capacity to intracellular CaM, we used primary cultures of mature cerebellar granule neurons (CGN) as a neuronal model. Our results showed a large complexation of submicromolar concentrations of Aβ(1–42) dimers by CaM in CGN, up to 120 ± 13 picomoles of Aβ(1–42) /2.5 × 10(6) cells. Using fluorescence microscopy imaging, we showed an extensive co-localization of CaM and Aβ(1–42) in lipid rafts in CGN stained with up to 100 picomoles of Aβ(1–42)-HiLyteTM-Fluor555 monomers. Intracellular Aβ(1–42) concentration in this range was achieved by 2 h incubation of CGN with 2 μM Aβ(1–42), and this treatment lowered the resting cytosolic calcium of mature CGN in partially depolarizing 25 mM potassium medium. We conclude that the primary cause of the resting cytosolic calcium decrease is the inhibition of L-type calcium channels of CGN by Aβ(1–42) dimers, whose activity is inhibited by CaM:Aβ(1–42) complexes bound to lipid rafts. MDPI 2021-02-17 /pmc/articles/PMC7923178/ /pubmed/33671444 http://dx.doi.org/10.3390/ijms22041984 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Poejo, Joana Salazar, Jairo Mata, Ana M. Gutierrez-Merino, Carlos Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title | Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title_full | Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title_fullStr | Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title_full_unstemmed | Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title_short | Binding of Amyloid β(1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis |
title_sort | binding of amyloid β(1–42)-calmodulin complexes to plasma membrane lipid rafts in cerebellar granule neurons alters resting cytosolic calcium homeostasis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923178/ https://www.ncbi.nlm.nih.gov/pubmed/33671444 http://dx.doi.org/10.3390/ijms22041984 |
work_keys_str_mv | AT poejojoana bindingofamyloidb142calmodulincomplexestoplasmamembranelipidraftsincerebellargranuleneuronsaltersrestingcytosoliccalciumhomeostasis AT salazarjairo bindingofamyloidb142calmodulincomplexestoplasmamembranelipidraftsincerebellargranuleneuronsaltersrestingcytosoliccalciumhomeostasis AT mataanam bindingofamyloidb142calmodulincomplexestoplasmamembranelipidraftsincerebellargranuleneuronsaltersrestingcytosoliccalciumhomeostasis AT gutierrezmerinocarlos bindingofamyloidb142calmodulincomplexestoplasmamembranelipidraftsincerebellargranuleneuronsaltersrestingcytosoliccalciumhomeostasis |