Cargando…

Preclinical efficacy and toxicity studies of a highly specific chimeric anti‐CD47 antibody

Cluster of differentiation 47 (CD47) is a widely expressed self‐protection transmembrane protein that functions as a critical negative regulator to induce macrophage‐mediated phagocytosis. Overexpression of CD47 enables cancer cells to escape immune surveillance and destruction by phagocytes both in...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zhiqiang, Gao, Jing, Yao, Jingyun, Yang, Teddy, Wang, Dongxu, Dai, Chaohui, Ding, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931223/
https://www.ncbi.nlm.nih.gov/pubmed/33449453
http://dx.doi.org/10.1002/2211-5463.13084
Descripción
Sumario:Cluster of differentiation 47 (CD47) is a widely expressed self‐protection transmembrane protein that functions as a critical negative regulator to induce macrophage‐mediated phagocytosis. Overexpression of CD47 enables cancer cells to escape immune surveillance and destruction by phagocytes both in solid tumours and leukaemia. The usefulness of anti‐CD47 antibody has been demonstrated in multiple immunotherapies associated with macrophages. However, antigen sinks and toxicity induced by inadvertent binding to normal cells restrict its clinical applications. Here, a novel anti‐human CD47 antibody, 4D10, was generated, and its variable regions were grafted onto a human IgG4 scaffold. Compared with the anti‐CD47 antibody Hu5F9, the resulting chimeric antibody (c4D10) has consistently demonstrated good tolerance in in vitro and in vivo toxicity studies. Additionally, c4D10 showed effective therapeutic potential through inducing the eradication of human cancer cells. Thus, c4D10 is a promising candidate therapeutic antibody with higher efficacy and reduced side effects compared to earlier antibodies, and its use may reduce the dose‐limiting toxicity of CD47 antagonists for immunotherapy.