Cargando…
Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks
Vegetation state is largely driven by climate and the complexity of involved processes leads to non-linear interactions over multiple time-scales. Recently, the role of temporally lagged dependencies, so-called memory effects, has been emphasized and studied using data-driven methods, relying on a v...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931900/ https://www.ncbi.nlm.nih.gov/pubmed/33693354 http://dx.doi.org/10.3389/fdata.2019.00031 |