Cargando…
Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks
Vegetation state is largely driven by climate and the complexity of involved processes leads to non-linear interactions over multiple time-scales. Recently, the role of temporally lagged dependencies, so-called memory effects, has been emphasized and studied using data-driven methods, relying on a v...
Autores principales: | Kraft, Basil, Jung, Martin, Körner, Marco, Requena Mesa, Christian, Cortés, José, Reichstein, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931900/ https://www.ncbi.nlm.nih.gov/pubmed/33693354 http://dx.doi.org/10.3389/fdata.2019.00031 |
Ejemplares similares
-
Observation-based assessment of secondary water effects on seasonal vegetation decay across Africa
por: Küçük, Çağlar, et al.
Publicado: (2022) -
Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation, and Optimal Measurement Placement in Power Systems?
por: Afonin, Andrei, et al.
Publicado: (2021) -
Arrival times by Recurrent Neural Network for induced seismic events from a permanent network
por: Kolar, Petr, et al.
Publicado: (2023) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning
por: Galassi, Andrea, et al.
Publicado: (2020)