Cargando…
Splitting sleep between the night and a daytime nap reduces homeostatic sleep pressure and enhances long-term memory
Daytime naps have been linked with enhanced memory encoding and consolidation. It remains unclear how a daily napping schedule impacts learning throughout the day, and whether these effects are the same for well-rested and sleep restricted individuals. We compared memory in 112 adolescents who under...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935993/ https://www.ncbi.nlm.nih.gov/pubmed/33674679 http://dx.doi.org/10.1038/s41598-021-84625-8 |
Sumario: | Daytime naps have been linked with enhanced memory encoding and consolidation. It remains unclear how a daily napping schedule impacts learning throughout the day, and whether these effects are the same for well-rested and sleep restricted individuals. We compared memory in 112 adolescents who underwent two simulated school weeks containing 8 or 6.5 h sleep opportunities each day. Sleep episodes were nocturnal or split between nocturnal sleep and a 90-min afternoon nap, creating four experimental groups: 8 h-continuous, 8 h-split, 6.5 h-continuous and 6.5 h-split. Declarative memory was assessed with picture encoding and an educationally realistic factual knowledge task. Splitting sleep significantly enhanced afternoon picture encoding and factual knowledge under both 6.5 h and 8 h durations. Splitting sleep also significantly reduced slow-wave energy during nocturnal sleep, suggesting lower homeostatic sleep pressure during the day. There was no negative impact of the split sleep schedule on morning performance, despite a reduction in nocturnal sleep. These findings suggest that naps could be incorporated into a daily sleep schedule that provides sufficient sleep and benefits learning. |
---|