Cargando…
Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939472/ https://www.ncbi.nlm.nih.gov/pubmed/33127647 http://dx.doi.org/10.1074/jbc.RA120.014890 |
_version_ | 1783661756360425472 |
---|---|
author | Lemke, Nora Melis, Valeria Lauer, Dilyara Magbagbeolu, Mandy Neumann, Boris Harrington, Charles R. Riedel, Gernot Wischik, Claude M. Theuring, Franz Schwab, Karima |
author_facet | Lemke, Nora Melis, Valeria Lauer, Dilyara Magbagbeolu, Mandy Neumann, Boris Harrington, Charles R. Riedel, Gernot Wischik, Claude M. Theuring, Franz Schwab, Karima |
author_sort | Lemke, Nora |
collection | PubMed |
description | Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function. |
format | Online Article Text |
id | pubmed-7939472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79394722021-06-08 Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia Lemke, Nora Melis, Valeria Lauer, Dilyara Magbagbeolu, Mandy Neumann, Boris Harrington, Charles R. Riedel, Gernot Wischik, Claude M. Theuring, Franz Schwab, Karima J Biol Chem Neurobiology Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function. American Society for Biochemistry and Molecular Biology 2021-01-13 /pmc/articles/PMC7939472/ /pubmed/33127647 http://dx.doi.org/10.1074/jbc.RA120.014890 Text en © 2020 © 2020 Lemke et al. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Neurobiology Lemke, Nora Melis, Valeria Lauer, Dilyara Magbagbeolu, Mandy Neumann, Boris Harrington, Charles R. Riedel, Gernot Wischik, Claude M. Theuring, Franz Schwab, Karima Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title | Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title_full | Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title_fullStr | Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title_full_unstemmed | Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title_short | Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
title_sort | differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia |
topic | Neurobiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939472/ https://www.ncbi.nlm.nih.gov/pubmed/33127647 http://dx.doi.org/10.1074/jbc.RA120.014890 |
work_keys_str_mv | AT lemkenora differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT melisvaleria differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT lauerdilyara differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT magbagbeolumandy differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT neumannboris differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT harringtoncharlesr differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT riedelgernot differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT wischikclaudem differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT theuringfranz differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia AT schwabkarima differentialcompartmentalprocessingandphosphorylationofpathogenichumantauandnativemousetauintheline66modeloffrontotemporaldementia |