Cargando…

ppGalNAc-T4-catalyzed O-Glycosylation of TGF-β type Ⅱ receptor regulates breast cancer cells metastasis potential

GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex posttranslational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qiong, Zhang, Cheng, Zhang, Keren, Chen, Qiushi, Wu, Sijin, Huang, Huang, Huang, Tianmiao, Zhang, Nana, Wang, Xue, Li, Wenli, Liu, Yubo, Zhang, Jianing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948473/
https://www.ncbi.nlm.nih.gov/pubmed/33234595
http://dx.doi.org/10.1074/jbc.RA120.016345
Descripción
Sumario:GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex posttranslational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of-function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial–mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-β) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knockout decreased O-GalNAc modification of TGF-β type Ⅰ and Ⅱ receptor (TβR Ⅰ and Ⅱ) and led to the elevation of TGF-β receptor dimerization and activity. Importantly, a peptide from TβR Ⅱ was identified as a naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TβR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31 A mutation enhanced TGF-β signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-β receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.