Cargando…
gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models
Genome-scale metabolic models of microorganisms are powerful frameworks to predict phenotypes from an organism’s genotype. While manual reconstructions are laborious, automated reconstructions often fail to recapitulate known metabolic processes. Here we present gapseq (https://github.com/jotech/gap...
Autores principales: | Zimmermann, Johannes, Kaleta, Christoph, Waschina, Silvio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7949252/ https://www.ncbi.nlm.nih.gov/pubmed/33691770 http://dx.doi.org/10.1186/s13059-021-02295-1 |
Ejemplares similares
-
Defining the nutritional input for genome-scale metabolic models: A roadmap
por: Marinos, Georgios, et al.
Publicado: (2020) -
Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics
por: Marinos, Georgios, et al.
Publicado: (2023) -
Meta-All: a system for managing metabolic pathway information
por: Weise, Stephan, et al.
Publicado: (2006) -
ChiMera: an easy to use pipeline for bacterial genome based metabolic network reconstruction, evaluation and visualization
por: Tamasco, Gustavo, et al.
Publicado: (2022) -
SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models
por: Reid, Ian, et al.
Publicado: (2014)