Cargando…
Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953430/ https://www.ncbi.nlm.nih.gov/pubmed/33738085 http://dx.doi.org/10.1039/d0sc03008b |
_version_ | 1783663913987997696 |
---|---|
author | Roque, John A. Barrett, Patrick C. Cole, Houston D. Lifshits, Liubov M. Shi, Ge Monro, Susan von Dohlen, David Kim, Susy Russo, Nino Deep, Gagan Cameron, Colin G. Alberto, Marta E. McFarland, Sherri A. |
author_facet | Roque, John A. Barrett, Patrick C. Cole, Houston D. Lifshits, Liubov M. Shi, Ge Monro, Susan von Dohlen, David Kim, Susy Russo, Nino Deep, Gagan Cameron, Colin G. Alberto, Marta E. McFarland, Sherri A. |
author_sort | Roque, John A. |
collection | PubMed |
description | Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)(2)-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0–4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 10(6) in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC(50) = 0.651 μM) in hypoxia (1% O(2)) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC(50) = 0.803 μM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer ((3)MLCT) to intraligand charge transfer ((3)ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg(–1), which positions this photosensitizer as an excellent candidate for in vivo applications. |
format | Online Article Text |
id | pubmed-7953430 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-79534302021-03-17 Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy Roque, John A. Barrett, Patrick C. Cole, Houston D. Lifshits, Liubov M. Shi, Ge Monro, Susan von Dohlen, David Kim, Susy Russo, Nino Deep, Gagan Cameron, Colin G. Alberto, Marta E. McFarland, Sherri A. Chem Sci Chemistry Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)(2)-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0–4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 10(6) in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC(50) = 0.651 μM) in hypoxia (1% O(2)) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC(50) = 0.803 μM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer ((3)MLCT) to intraligand charge transfer ((3)ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg(–1), which positions this photosensitizer as an excellent candidate for in vivo applications. Royal Society of Chemistry 2020-08-03 /pmc/articles/PMC7953430/ /pubmed/33738085 http://dx.doi.org/10.1039/d0sc03008b Text en This journal is © The Royal Society of Chemistry 2020 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Roque, John A. Barrett, Patrick C. Cole, Houston D. Lifshits, Liubov M. Shi, Ge Monro, Susan von Dohlen, David Kim, Susy Russo, Nino Deep, Gagan Cameron, Colin G. Alberto, Marta E. McFarland, Sherri A. Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy |
title | Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
|
title_full | Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
|
title_fullStr | Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
|
title_full_unstemmed | Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
|
title_short | Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy
|
title_sort | breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7953430/ https://www.ncbi.nlm.nih.gov/pubmed/33738085 http://dx.doi.org/10.1039/d0sc03008b |
work_keys_str_mv | AT roquejohna breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT barrettpatrickc breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT colehoustond breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT lifshitsliubovm breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT shige breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT monrosusan breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT vondohlendavid breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT kimsusy breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT russonino breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT deepgagan breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT cameroncoling breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT albertomartae breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy AT mcfarlandsherria breakingthebarrieranosmiumphotosensitizerwithunprecedentedhypoxicphototoxicityforrealworldphotodynamictherapy |