Cargando…
RGDiNet: Efficient Onboard Object Detection with Faster R-CNN for Air-to-Ground Surveillance
An essential component for the autonomous flight or air-to-ground surveillance of a UAV is an object detection device. It must possess a high detection accuracy and requires real-time data processing to be employed for various tasks such as search and rescue, object tracking and disaster analysis. W...
Autores principales: | Kim, Jongwon, Cho, Jeongho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957492/ https://www.ncbi.nlm.nih.gov/pubmed/33804364 http://dx.doi.org/10.3390/s21051677 |
Ejemplares similares
-
Onboard CNN-Based Processing for Target Detection and Autonomous Landing for MAVs
por: Cabrera-Ponce, A. A., et al.
Publicado: (2020) -
DBSCAN-Based Tracklet Association Annealer for Advanced Multi-Object Tracking
por: Kim, Jongwon, et al.
Publicado: (2021) -
Real-Time Water Surface Object Detection Based on Improved Faster R-CNN
por: Zhang, Lili, et al.
Publicado: (2019) -
Engineering Vehicles Detection Based on Modified Faster R-CNN for Power Grid Surveillance
por: Xiang, Xuezhi, et al.
Publicado: (2018) -
Object Detection Based on Faster R-CNN Algorithm with Skip Pooling and Fusion of Contextual Information
por: Xiao, Yi, et al.
Publicado: (2020)