Cargando…

Effects of network topology on the performance of consensus and distributed learning of SVMs using ADMM

The Alternating Direction Method of Multipliers (ADMM) is a popular and promising distributed framework for solving large-scale machine learning problems. We consider decentralized consensus-based ADMM in which nodes may only communicate with one-hop neighbors. This may cause slow convergence. We in...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavara, Shirin, Schliep, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959654/
https://www.ncbi.nlm.nih.gov/pubmed/33817043
http://dx.doi.org/10.7717/peerj-cs.397