Cargando…
Effects of network topology on the performance of consensus and distributed learning of SVMs using ADMM
The Alternating Direction Method of Multipliers (ADMM) is a popular and promising distributed framework for solving large-scale machine learning problems. We consider decentralized consensus-based ADMM in which nodes may only communicate with one-hop neighbors. This may cause slow convergence. We in...
Autores principales: | Tavara, Shirin, Schliep, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959654/ https://www.ncbi.nlm.nih.gov/pubmed/33817043 http://dx.doi.org/10.7717/peerj-cs.397 |
Ejemplares similares
-
Network intrusion detection using oversampling technique and machine learning algorithms
por: Ahmed, Hafiza Anisa, et al.
Publicado: (2022) -
Adaptive sentiment analysis using multioutput classification: a performance comparison
por: Hariguna, Taqwa, et al.
Publicado: (2023) -
Assessing English language sentences readability using machine learning models
por: Maqsood, Shazia, et al.
Publicado: (2022) -
Abstractive text summarization of low-resourced languages using deep learning
por: Shafiq, Nida, et al.
Publicado: (2023) -
An ensemble learning based IDS using Voting rule: VEL-IDS
por: Emanet, Sura, et al.
Publicado: (2023)