Cargando…
Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization
Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961341/ https://www.ncbi.nlm.nih.gov/pubmed/33806712 http://dx.doi.org/10.3390/s21051792 |