Cargando…
Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization
Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized...
Autores principales: | Hagad, Juan Lorenzo, Kimura, Tsukasa, Fukui, Ken-ichi, Numao, Masayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961341/ https://www.ncbi.nlm.nih.gov/pubmed/33806712 http://dx.doi.org/10.3390/s21051792 |
Ejemplares similares
-
Multi-Kernel Temporal and Spatial Convolution for EEG-Based Emotion Classification
por: Emsawas, Taweesak, et al.
Publicado: (2022) -
Familiarity effects in EEG-based emotion recognition
por: Thammasan, Nattapong, et al.
Publicado: (2016) -
Extracting a Novel Emotional EEG Topographic Map Based on a Stacked Autoencoder Network
por: Vafaei, Elnaz, et al.
Publicado: (2023) -
Abnormal ECG detection based on an adversarial autoencoder
por: Shan, Lianfeng, et al.
Publicado: (2022) -
Face Aging by Explainable Conditional Adversarial Autoencoders
por: Korgialas, Christos, et al.
Publicado: (2023)