Cargando…

PGC1α Promotes Cisplatin Resistance in Ovarian Cancer by Regulating the HSP70/HK2/VDAC1 Signaling Pathway

Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activate...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yanqing, Kang, Jinsong, Fu, Jiaying, Luo, Haoge, Liu, Yanan, Li, Yang, Sun, Liankun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961780/
https://www.ncbi.nlm.nih.gov/pubmed/33802591
http://dx.doi.org/10.3390/ijms22052537
Descripción
Sumario:Mitochondrial apoptosis is one of the main mechanisms for cancer cells to overcome chemoresistance. Hexokinase 2 (HK2) can resist cancer cell apoptosis by expressing on mitochondria and binding to voltage-dependent anion channel 1 (VDAC1). We previously reported that peroxisome proliferator-activated receptor coactivator 1 α (PGC1α) is highly expressed in ovarian cancer cisplatin-resistant cells. However, the underlying mechanism remains unclear. Therefore, we evaluated the interaction between PGC1α and HK2 in ovarian cancer cisplatin-resistant cells. We found that the knockdown of PGC1α promotes the apoptosis of ovarian cancer cisplatin-resistant cells and increases their sensitivity to cisplatin. In addition, we found that the knockdown of PGC1α affects the mitochondrial membrane potential and the binding of HK2 and VDAC1. As the heat shock protein 70 (HSP70) family can help protein transport, we detected it and found that PGC1α can promote HSP70 gene transcription. Furthermore, HSP70 can promote an increase of HK2 expression on mitochondria and an increase of binding to VDAC1. Based on these results, PGC1α may reduce apoptosis through the HSP70/HK2/VDAC1 signaling pathway, thus promoting cisplatin resistance of ovarian cancer. These findings provide strong theoretical support for PGC1α as a potential therapeutic target of cisplatin resistance in ovarian cancer.