Cargando…
Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples
Unraveling molecular regulatory networks underlying disease progression is critically important for understanding disease mechanisms and identifying drug targets. The existing methods for inferring gene regulatory networks (GRNs) rely mainly on time-course gene expression data. However, most availab...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968745/ https://www.ncbi.nlm.nih.gov/pubmed/33667222 http://dx.doi.org/10.1371/journal.pcbi.1008379 |