Cargando…
Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples
Unraveling molecular regulatory networks underlying disease progression is critically important for understanding disease mechanisms and identifying drug targets. The existing methods for inferring gene regulatory networks (GRNs) rely mainly on time-course gene expression data. However, most availab...
Autores principales: | Sun, Xiaoqiang, Zhang, Ji, Nie, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968745/ https://www.ncbi.nlm.nih.gov/pubmed/33667222 http://dx.doi.org/10.1371/journal.pcbi.1008379 |
Ejemplares similares
-
Inferring disease progression and gene regulatory networks from clinical transcriptomic data using PROB_R
por: Dong, Zhaorui, et al.
Publicado: (2022) -
Inference of regulatory networks through temporally sparse data
por: Alali, Mohammad, et al.
Publicado: (2022) -
Gene regulatory network inference from sparsely sampled noisy data
por: Aalto, Atte, et al.
Publicado: (2020) -
Inferring evolutionary trajectories from cross-sectional transcriptomic data to mirror lung adenocarcinoma progression
por: Huang, Kexin, et al.
Publicado: (2023) -
Temporal context and latent state inference in the hippocampal splitter signal
por: Duvelle, Éléonore, et al.
Publicado: (2023)