Cargando…
Prioritization of schizophrenia risk genes from GWAS results by integrating multi-omics data
Schizophrenia (SCZ) is a polygenic disease with a heritability approaching 80%. Over 100 SCZ-related loci have so far been identified by genome-wide association studies (GWAS). However, the risk genes associated with these loci often remain unknown. We present a new risk gene predictor, rGAT-omics,...
Autores principales: | He, Dan, Fan, Cong, Qi, Mengling, Yang, Yuedong, Cooper, David N., Zhao, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969765/ https://www.ncbi.nlm.nih.gov/pubmed/33731678 http://dx.doi.org/10.1038/s41398-021-01294-x |
Ejemplares similares
-
GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation
por: Chung, Dongjun, et al.
Publicado: (2014) -
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data
por: Wang, Quan, et al.
Publicado: (2019) -
Network-based integration of multi-omics data for prioritizing cancer genes
por: Dimitrakopoulos, Christos, et al.
Publicado: (2018) -
Prioritization of therapeutic targets for dyslipidemia using integrative multi-omics and multi-trait analysis
por: Kim, Min Seo, et al.
Publicado: (2023) -
Integrating human omics data to prioritize candidate genes
por: Chen, Yong, et al.
Publicado: (2013)