Cargando…

Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks

Reinforcement learning is a paradigm that can account for how organisms learn to adapt their behavior in complex environments with sparse rewards. To partition an environment into discrete states, implementations in spiking neuronal networks typically rely on input architectures involving place cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Weidel, Philipp, Duarte, Renato, Morrison, Abigail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970044/
https://www.ncbi.nlm.nih.gov/pubmed/33746728
http://dx.doi.org/10.3389/fncom.2021.543872